
A Practical Solution to the Cactus Stack Problem

Chaoran Yang
Department of Computer Science

Rice University
chaoran@rice.edu

John Mellor-Crummey
Department of Computer Science

Rice University
johnmc@rice.edu

ABSTRACT
Work-stealing is a popular method for load-balancing dy-
namic multithreaded computations on shared-memory sys-
tems. In theory, a randomized work-stealing scheduler can
achieve near linear speedup when the computation has suffi-
cient parallelism and requires stack space that is linear in the
number of processors. In practice, however, work-stealing
runtimes sacrifice interoperability with serial code to achieve
these bounds. For example, both Cilk and Cilk++ prohibit
a C function from calling a Cilk function. Other work-
stealing runtime systems that do not have this restriction
either lack a strong time bound, which might cause them
to deliver little or no speedup in the worst case, or lack a
strong space bound, which might lead to an excessive mem-
ory footprint. This problem was previously described as the
cactus stack problem.

In this paper, we present Fibril, a new multithreading li-
brary that supports a fork-join programming model using
work-stealing. Fibril solves the cactus stack problem by (1)
implementing on a cactus stack that conforms to the calling
conventions of serial code and (2) returning unused mem-
ory pages of suspended stacks to the operating system to
bound consumption of physical memory. Theoretically, Fib-
ril achieves strong bounds on both time and memory usage
without sacrificing interoperability with serial code. Em-
pirically, Fibril achieves up to 3× the performance of Intel
Cilk Plus and up to 8× the performance of Intel Threading
Building Blocks for the 12 benchmarks we evaluated.

Keywords
Work-stealing; cactus stack; interoperability.

1. INTRODUCTION
Work-stealing is a standard technique for load balancing

parallel tasks in multicore systems. Many parallel program-
ming models employ work-stealing to support dynamic task
parallelism, including Cilk [8], OpenMP 3.0 [3], Threading
Building Blocks (TBB) [15], Java Fork/Join Framework [9],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPAA’16, July 11–13, 2016, Pacific Grove, California, USA.
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4210-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2935764.2935787

Task Parallel Library [11], and X10 [5]. Work-stealing en-
ables an efficient implementation that guarantees bounds on
both time and stack space. For a class of computations, Blu-
mofe and Leiserson [4] prove strong time and space bounds
when stealing is unrestricted. Let T1 be the running time of
a deterministic parallel computation on one processor, i.e.,
its work, and let T∞ be its ideal running time on an infi-
nite number of processors, i.e., its span. Then a randomized
work-stealing scheduler can perform the computation on P
processors in expected time

Tp ≤ T1/P + c∞T∞, (1)

where c∞ is a constant value called span overhead. This
bound guarantees linear speedup when P � T1/T∞, that is,
the number of processors P is much less than the compu-
tation’s average parallelism T1/T∞. Moreover, if S1 is the
stack space of a serial execution, a randomized work-stealing
scheduler can execute the computation on P processors us-
ing stack space

Sp ≤ PS1. (2)

This bound guarantees that the stack space usage in a paral-
lel execution is at worst linear in the number of processors.

For a program written in an Algol-like programming lan-
guage, such as C, its execution can be thought of as a depth-
first traversal of its invocation tree. If a function instance
A calls a function instance B,1 A is the parent of B in the
invocation tree. When a processor executes a function, it al-
locates an activation frame that stores local data, including
arguments and local variables for that function. A processor
frees an activation frame when it returns from that function.
For a serial execution of a program, activation frames can
be allocated using a simple linear stack. In a linear stack,
a function call advances the stack pointer to allocate a new
frame on the top of the stack; when the function returns, it
restores the stack pointer to its value for the parent frame,
freeing the child frame.

When a program executes in parallel, however, a linear
stack is insufficient. In a parallel execution, multiple chil-
dren of a function may exist simultaneously; their activation
frames form a tree of stacks, namely a cactus stack. A cactus
stack is essentially an N -ary tree in which each node has a
pointer to its parent node. Each node in a cactus stack is
a linear stack that allocates and frees activation frames by
manipulating a stack pointer. If a frame creates a new child
while another child still exists, it allocates a new stack to

1In the rest of the paper, we use the term function instead
of function instance where there is no room for ambiguity.

http://dx.doi.org/10.1145/2935764.2935787

store the new child’s activation frame with a parent pointer
that points to itself.

Cactus stacks are a key building block in parallel runtime
systems. Ideally, a cactus stack implementation should:

• support full interoperability with serial binaries com-
piled to use a linear stack,

• enable a scheduler to achieve nearly perfect linear
speedup on computations with ample parallelism, and

• consume a bounded amount of stack space that is prac-
tical for general-purpose systems.

It is difficult for work-stealing runtimes to achieve all three
criteria at the same time. For example, Cilk [8] guarantees
the time bound and space bound, however it forbids a C
function from calling Cilk functions. Interoperability with
serial code, aka serial-parallel reciprocity, is important for
building reusable software. Common design patterns, such
as visitor and observer patterns, use callback functions to
communicate between objects. One cannot use these pat-
terns if the visitor or observer’s callback invokes a Cilk func-
tion. TBB [15] is interoperable with serial code. However, to
avoid consuming potentially unbounded stack space, TBB
restricts a worker to steal only frames that are deeper on
the stack than its own suspended frame; this may lead to
sub-linear speedup for some computations. Lee et al. [10]
refer to the problem of achieving the three aforementioned
criteria simultaneously as the cactus stack problem. They
presented a solution that leverages a thread-local memory
mapping (TLMM) mechanism. TLMM enables threads in
a process to map different physical memory pages for the
same region of the process’s virtual address space. Sadly, no
existing operating systems supports TLMM, which makes
Lee et al.’s approach impractical on systems running con-
ventional kernels.

This paper presents a practical solution to the cactus stack
problem. We designed a library-based work-stealing system,
Fibril, that supports a fork-join programming model. Fibril
uses a cactus stack that is fully interoperable with serial
code that uses a linear stack. Fibril achieves a strong time
bound Tp ≤ T1/P + c∞T∞, where c∞ = O(S1 + D), and a
strong space bound Sp ≤ P (S1 + D). In both bounds, D is
the Fibril depth (defined in Section 4.4) of a Fibril program.

The contribution of Fibril is two-fold. First, we present
a cactus stack implementation that is more efficient than
existing work-stealing systems. Second, we present a stack
management technique that maintains a strong space bound
without sacrificing a strong time bound. Fibril’s cactus stack
may use up to DPS1 pages of virtual address space, which
is practical for systems that use a 64-bit address space.

Section 2 explains the cactus stack problem in work-
stealing runtime systems. Section 3 describes existing ap-
proaches for managing cactus stacks in work-stealing sys-
tems. Section 4 describes the implementation of Fibril in
detail. Section 5 presents an evaluation of Fibril. Section 6
presents our conclusions.

2. BACKGROUND
We investigate the cactus stack problem in the context of a

fork-join programming model. In this model, a programmer
expresses logical parallelism using a fork construct. When
a function A initiates a fork to perform an asynchronous
call to a function B, A may continue to execute without
waiting for B to complete. We refer to the callee B at a
fork as a child task and the caller A as its parent. A join

construct synchronizes between a parent and its child tasks,
suspending execution of the parent until all of its children
complete.

We consider the cactus stack problem in the context of a
work-stealing scheduler, which executes a computation ex-
pressed in a fork-join programming model on a finite set of
hardware threads, called workers. In particular, we consider
the randomized work-stealing scheduler proposed by Blu-
mofe and Leiserson [4]. Cilk and its descendants, Cilk++
and Intel Cilk Plus, use such a scheduler in their runtime
system to support their fork-join programming models.

In Cilk’s work-stealing scheduler, each worker maintains a
double-ended queue, known as a deque. A worker pushes the
parent frame onto its deque at a fork (cilk_spawn) and
pops it when the task completes.2 When a worker runs out
of work, it becomes a thief and steals from the top of a ran-
domly selected worker’s deque. We refer to the worker that
has its parent frame stolen as a victim. When a worker steals
a frame, it executes the frame until it encounters a join
(cilk_sync). At a join, the current frame is suspended if
any of its child tasks have not yet completed; otherwise, the
worker continues with the frame. If a thief steals a frame, the
victim will fail when attempting to pop the frame from its
deque. Then the victim will attempt to resume the stolen
frame, expecting that the thief has completed the frame.
If the resumption succeeds, the victim executes the stolen
frame starting at the join; otherwise, it becomes a thief
and performs randomized stealing.

Blumofe and Leiserson [4] have shown that Cilk’s work-
stealing scheduler can execute a computation on P workers
in expected time Tp ≤ T1/P + c∞T∞. Their proof of the
time bound indicates that, to achieve near-linear speedup,
each worker needs to be either working and making progress
on the T1/P term, or randomly stealing and making progress
on the T∞ term with high probability. If any worker were to
wait, or candidate frames for stealing are restricted, the time
bound would cease to hold, resulting in sublinear speedup
on a program with sufficient parallelism.

Cilk’s work-stealing scheduler maintains the so-called
busy-leaves property [4], which states that during the execu-
tion of the computation, every extant leaf of the invocation
tree has a worker executing it. The busy-leaves property
leads to the space bound of PS1, since any path from a leaf
to the root of the invocation tree corresponds to a path in
the cactus stack, no path can require more than S1 space,
and there can be at most P leaves active at a time.

We analyze the cactus stack problem under the assump-
tion that a work-stealing scheduler cannot move a frame to a
different address in memory once it is allocated as moving a
frame will invalidate all pointers to variables in the frame.3

Under this restriction, if a worker fails to pop from its deque
and finds the frame on top of its stack suspended, it cannot
move the frame out of its stack. The worker also cannot

2Some work-stealing schedulers push a child frame created
by a fork onto a worker’s local deque and continue execut-
ing the parent frame after the fork. We do not consider
such schedulers in this paper because they may require an
unbounded amount of space for bookkeeping.
3 Some work-stealing programming models forbid users from
creating a pointer to a local variable and hence do not have
this restriction. Other work-stealing systems leverage the
help of a managed environment that can update pointers
when frames are moved. However we assume a native run-
time environment in this paper.

use its stack space to execute a stolen task because the sus-
pended frame may be resumed, allocating more frames on
the stack before the stolen task completes. A naive approach
to construct a cactus stack would be to allocate a new stack
to execute the stolen task; however, this approach may lead
to an impractically large number of stacks since each stack
may contain as little as a single frame in the worst case.
Cilk and Cilk++ allocate frames of Cilk functions in heap
to avoid having a suspended frame tie up a stack. However,
this requires Cilk functions to use a custom calling conven-
tion that is not compatible with the standard calling con-
ventions. Therefore a Cilk program is not fully interoperable
with serial code.

3. RELATED WORK
In this section, we describe various approaches to the cac-

tus stack problem used by existing work-stealing runtimes.
To summarize, these work-stealing runtimes address the cac-
tus stack problem by either sacrificing one of the three crite-
ria of a cactus stack or relying on custom operating system
extensions. Therefore, we do not consider them as practical
solutions to the cactus stack problem.

Cilk [8] and Cilk++ [12] use heap-allocated activation
frames for Cilk functions. For normal C functions, Cilk stack
allocates their activation frames. Cilk forbids a C function
from calling a Cilk function to prevent stack frames from
being suspended. This restriction helps Cilk to maintain a
strong space bound, however sacrifices serial-parallel reci-
procity.

Intel Cilk Plus [16] does not forbid a C function from call-
ing a Cilk function. In Cilk Plus, a worker executes stolen
frames on empty stacks acquired from a pool of stacks. The
stack pool contains a bounded number of stacks. When
the stack pool is empty, a thief has to refrain from steal-
ing until some worker returns a stack to the pool. This
implementation choice sacrifices the theoretical time bound
of randomized work stealing to provide a tight space bound.
Lee et al. [10] state that the theoretical space bound of using
a new stack for each stolen frame is DPS1, where D is the
depth of a Cilk application. Therefore, to avoid staling due
to a shortage of stacks, executing an application in Cilk Plus
on a large number of workers may require an impractically
large number of stacks.

A different approach is to allocate activation frames, both
called or forked, on a linear stack. In particular, if a worker
has a suspended frame on top of its stack, it steals a frame
and executes it using its remaining stack space. In this case,
the scheduler cannot resume the suspended frame until the
stolen frame completes since the suspended frame may allo-
cate new frames on the stack when resumed. This restriction
violates the busy-leaves property because a suspended frame
that is ready to resume is an extant leaf of the invocation tree
and no worker is working on it. Violating the busy-leaves
property can cause each worker’s stack to grow impractically
large. To prevent a worker’s stack from growing beyond S1,
one can restrict a worker to only steal frames with a depth
greater than the depth of the current suspended frame in the
invocation tree. This form of stealing, called depth-restricted
stealing, sacrifices the time bound. Sukha [17] has shown
that there exist computations for which a depth-restricted
stealing scheduler cannot execute faster than a sequential
execution. TBB [15] uses a strategy that is similar to depth-
restricted stealing.

A technique called leapfrogging can be applied to conserve
stack space when implementing a cactus stack. Wagner and
Calder proposed the leapfrogging technique to implement fu-
tures [18]. The logic behind leapfrogging is that if a worker
has a suspended frame on its stack, it can steal a frame that
is a descendant of the suspended frame and execute it using
its remaining stack space. It is safe to reuse the stack in this
way because the suspended frame will not resume until all
its descendants complete, including the stolen frame. Be-
cause leapfrogging restricts a thief to steal only descendant
tasks of the suspended frames on its stack, it is more restric-
tive than depth-restricted stealing. Therefore, Sukha’s lower
bound [17] applies to leapfrogging as well. Agrawal et al. [1]
endorsed this idea for Cilk, but they did not show an em-
pirical evaluation of the approach.

Lee et al. [10] addressed the cactus stack problem by mod-
ifying the operating system kernel to provide support for
thread-local memory mapping (TLMM). TTLM designates
a region of a process’s virtual address space as “local” to
each thread, i.e. each worker may map different memory
pages to the TLMM region. Lee et al. created a work-
stealing runtime system, Cilk-M, by using TLMM to imple-
ment the cactus stack in Cilk’s runtime system. In Cilk-M,
each worker executes on a stack that resides in the TLMM
region. Whenever a thief steals a frame, it moves the mem-
ory pages that contain the stolen frame and the ancestor
frames — the stack prefix — to its stack. Because stacks
reside in the TLMM region, a thief can place the stolen
stack prefix at the same virtual address as it was allocated.
Therefore, pointers to local variables in the stack prefix are
still valid. There are two major drawbacks of the TLMM
approach. First, TLMM is currently not supported by any
existing operating system. Second, since a worker’s stack re-
sides in the TLMM region, variables allocated on a worker’s
stack are not addressable by other workers. This restriction
means shared data structures that allocate storage on the
stack, such as MCS locks [14], do not work in Cilk-M.

4. FIBRIL
We present Fibril, a lightweight multithreading library to

support a fork-join programming model. The design of Fib-
ril closely follows that of Cilk. Fibril’s randomized work-
stealing scheduler behaves similarly to Cilk’s scheduler as
described in Section 2. Nevertheless, there are two major
differences between Cilk and Fibril. First, Fibril is a pure C
library that does not require a custom compiler front-end.
Instead, Fibril exposes its interface as C macros, leverag-
ing the C preprocessor to generate parallel code for a Fibril
program. Second, unlike Cilk, which forbids a C function
from calling a Cilk function, Fibril functions are fully inter-
operable with C functions. Fibril realizes our solution to the
cactus stack problem by maintaining a strong time bound,
a strong space bound, and serial-parallel reciprocity.

Section 4.1 introduces Fibril’s API. Section 4.2 describes
how Fibril exploits the standard x86-64 calling conventions
to construct a cactus stack for parallel execution. Section 4.3
presents the implementation of Fibril’s work-stealing sched-
uler. Section 4.4 analyzes the theoretical time and space
bounds of Fibril’s scheduler.

4.1 Fibril’s API
We use an example to show how to use Fibril to paral-

lelize a serial program using a fork-join programming model.

1 int fib(int n) {
2 if (n < 2) return n;

3 int x, y;
4 x = fib(n - 1);
5 y = fib(n - 2);

6 return x + y;
7 }

8 fibril int parfib(int n) {
9 if (n < 2) return n;

10 fibril_t fr;
11 fibril_init(&fr);

12 int x, y;
13 fibril_fork(&fr, x, parfib, (n - 1));
14 y = parfib(n - 2);

15 fibril_join(&fr);
16 return x + y;
17 }

Listing 1: A function fib and its parallel version
parfib implemented in Fibril. Fibril macros are
shown in italic font.

Listing 1 shows a serial function, fib, which computes a Fi-
bonacci number recursively, and a Fibril function, parfib,
which is a parallel implementation of fib using Fibril.

Fibril requires that one label a Fibril function — a func-
tions that forks or joins tasks — with the fibril keyword
(line 8). The fibril keyword instructs compilers to gen-
erate code for the function that conforms to a calling con-
vention that permits parallel execution (described in Sec-
tion 4.2). Unlike Cilk, which restricts that a Cilk function
can only be spawned, one can either fork a Fibril function
(line 13) or call the function directly (line 14).

Before forking or joining a Fibril function, one should
declare (line 10) and initialize (line 11) a variable of type
fibril_t, namely a Fibril frame. A Fibril frame synchro-
nizes child tasks and stores the execution state of their par-
ent task. To fork a function, one invokes the fibril_fork
macro with (1) an initialized Fibril frame, (2) a variable to
receive the return value, unless the function returns void,
(3) the name of the function to fork, and (4) the arguments
to the function wrapped within parenthesis (line 13). Log-
ically, fibril_fork creates a child task that executes in
parallel with its parent. One can use the same Fibril frame
to fork multiple functions. To join the forked functions
on a Fibril frame, one invokes the fibril_join macro
with the Fibril frame as an argument (line 15). Logically,
fibril_join blocks the execution of its caller until all
functions forked with the Fibril frame as their parent com-
plete.

Like Cilk, the design of Fibril’s API follows the C eli-
sion rule proposed by Frigo et al. [8]. If we expand
fibril_init and fibril_join to empty statements,
and fibril_fork to a function call, we will have a syn-
tactically and semantically correct serial program.

Unlike other library based multithreading systems, such as
Posix threads, Fibril’s API does not require Fibril functions
to use a uniform function signature. Using a uniform func-
tion signature forces the parent function to pass arguments
to a forked function via memory, which is more costly than
passing arguments via registers. Therefore, Fibril’s API is

Position Contents Frame
8n+16(%rbp) B’s memory argument bn linkage

... region
16(%rbp) B’s memory argument b0
8(%rbp) B’s return address
0(%rbp) A’s %rbp value

-8(%rbp) B’s local variables B’s frame
...

0(%rsp) (unspecified variable size)
-8(%rsp) C’s memory argument cn linkage

... region
-8n-8(%rsp) C’s memory argument c0

Figure 1: Stack organization on x86-64 systems.
%rbp: frame pointer register; %rsp: stack pointer register.

High address is at top of the figure.

not only flexible to use, but also permits a low overhead im-
plementation of fibril_fork, which can be used to create
fine-grained parallelism.

4.2 Fibril’s calling conventions
A calling convention defines how a function receives ar-

guments from its caller, how it returns a result, and how a
function’s state is preserved across function calls. Different
compilation units are interoperable only when they conform
to the same calling convention. An architecture’s Applica-
tion Binary Interface (ABI) defines the calling conventions
that a binary compiled for the architecture should use. We
designed Fibril to work on the x86-64, aka AMD64, architec-
ture. In this section, we describe x86-64 architecture’s call-
ing conventions [13]. We then explain the implementation of
Fibril’s cactus stack, which supports x86-64 calling conven-
tions to enable parallel execution of a Fibril function. In the
end, we describe Fibril’s context switch scheme which lever-
ages x86-64 calling conventions to reduce overhead. Fibril
can be ported to non x86-64 systems with minor changes.

4.2.1 x86-64’s linear stack and Fibril’s cactus stack
Figure 1 shows a snapshot of the stack organization on

x86-64 systems. The snapshot is taken when a thread is
executing function B. B was called by function A, and is
calling function C. A thread’s run-time stack contains the
stack frames of live function instances. A function’s stack
frame contains its return address, the value of its parent’s
frame pointer, and storage for its local variables. Typically,
when a function makes a function call, it passes the callee’s
arguments in registers. For arguments that cannot be passed
in a register, it allocates a linkage region between the caller
and the callee to pass these arguments. When a thread
executes a function, it accesses its stack using two registers:
%rbp and %rsp. In Figure 1, the thread uses %rbp, aka
the frame pointer, with positive offsets to access memory
arguments and the stack frame of the current function B.
When B calls C, the thread decrements %rsp, aka the stack
pointer, pushing memory arguments to be passed to its callee
C onto the stack, then decrements %rsp again to allocate
C’s stack frame.

Using both a frame pointer and a stack pointer allows a
stack frame to be of an unspecified variable size. Using two
pointers to manipulate the stack frames enables us to use
this calling convention to construct a cactus stack. In Fib-

…
linkage region
B’s stack frame
linkage region
C’s stack frame

…

linkage region
D’s stack frame

…

W2

%rbp
%rsp

original stack

child stack

%rbp
%rsp
W1

Figure 2: Fibril’s cactus stack organization.

ril, when a thread W1 forks a function C and a thief W2

steals C’s parent B, W2 resumes execution of B on B’s orig-
inal stack using a new stack pointer (%rsp) that points to
the top of a new stack. Figure 2 illustrates this situation. In
this case, W2 can access B’s stack frame and memory argu-
ments via using its frame pointer (%rbp). When W2 calls or
forks another child function C, C’s memory arguments and
stack frame will be allocated on the new stack, avoiding a
collision with C’s frame on the original stack. In this way,
we construct a cactus stack that allows multiple children of
a function to exist simultaneously. When W2 returns from
B, we restore its stack pointer to its original value pointing
to the original stack.

When the size of a function’s frame is known at com-
pile time, the x86-64 ABI allows the function to avoid using
%rbp as a frame pointer for the fixed-size frame. This op-
timization saves the instructions to push and pop %rbp in
a function’s prologue and epilogue; it also allows %rbp to
be used as a general-purpose register. Nevertheless, omit-
ting a function’s frame pointer disallows it to be executed
on a non-linear stack. Therefore, Fibril assumes a Fibril
function always retains a frame pointer. Some compilers,
such as GCC, provide a function attribute that instructs
the compiler to use a frame pointer when generating code
for a function. Fibril expands the fibril macro into such
an attribute. For compilers that do not provide this feature,
one can define a dummy variable that is a variable-length
array in the Fibril function to achieve the same effect.

4.2.2 Enabling context switch in Fibril
The x86-64 ABI classifies all registers in an x86-64 system

into two categories: a caller-saved register, whose value must
be preserved by the caller, and a callee-saved register, whose
value must be preserved by the callee. When a function
uses a callee-saved register, it must save the register’s value
in its stack frame in its prologue and restore the value in
its epilogue. There are six callee-saved registers on x86-64:
%rbp, %rbx, and %r12 through %r15; all other registers are
caller-saved registers.

Fibril exploits these rules to implement a low-overhead
context switch scheme to save and resume a Fibril frame’s
execution state. Listing 2 shows the code for the parfib
function in Listing 1 with Fibril’s macros expanded. In Fib-
ril, a context switch may only happen at a fibril_fork or
a fibril_join. Specifically, if a worker W1 forks B and
W2 steals the parent A, it resumes A’s execution starting
from the instruction immediately after the fibril_fork;
if a worker resumes A after A’s children complete, it exe-
cutes A starting from the instruction immediately after the
fibril_join that corresponds to the fork.

18 typedef struct {
19 int lock;
20 int count;
21 struct { void * rbp, rsp, rip; } state;
22 void * stack;
23 } fibril_t;

24 int parfib(int n) {
25 if (n < 2) return n;

26 fibril_t fr;
27 { // fibril_init(&fr);
28 fr.lock = 0;
29 fr.count = 0;
30 }

31 int x, y;
32 { // fibril_fork(&fr, x, fib, (n - 1));
33 fr.state.rbp = get_frame_pointer();
34 fr.state.rsp = get_stack_pointer();
35 void fork_parfib(int a1, int * ret, fibril_t * f) {
36 f->state.rip = get_return_address();
37 _fibril_push(f);
38 *ret = parfib(a1);
39 if (!_fibril_pop()) _fibril_resume(f);
40 }
41 fork_parfib(n - 1, &x, &fr); clobber_regs();
42 }
43 y = fib(n - 2);

44 if (fr.count > 0) { // fibril_join(&fr);
45 fr.state.rbp = get_frame_pointer();
46 fr.state.rsp = get_stack_pointer();
47 _fibril_join(&fr); clobber_regs();
48 }
49 return x + y;
50 }

51 void _fibril_join(fibril_t * f) {
52 f->state.rip = get_return_address();
53 _fibril_resume(f);
54 }

Listing 2: parfib with Fibril macros expanded.
Names with _fibril_ prefix are Fibril’s runtime
routines. Functions shown in italic font are imple-
mented using compiler extensions.

To preserve a frame’s execution context at a fork or a join,
we need to save the values of all registers. For caller-saved
registers, since the calling convention requires the compiler
to save them before a function call, we rely on the com-
piler to save them by implementing both fibril_fork
and fibril_join as function calls. In particular, Fibril
expands fibril_fork into a call to a task-specific nested
function (line 41) and expands a fibril_join into a call to
a Fibril runtime routine _fibril_join inside an if-block
(line 47). GCC implements nested functions using several
strategies: (1) when a nested function can be inlined, GCC
inlines the function; (2) if the nested function cannot be in-
lined and it references a variable of its enclosing function,
GCC generates a trampoline for the nested function and
the nested function uses a general purpose register to ref-
erence its enclosing function’s variables; (3) if the nested
function cannot be inlined and does not reference variables
in its enclosing function, GCC treats the nested function
as a normal function. Fibril uses a noinline attribute
to mark the nested function to prevent the compiler from
inlining it, therefore GCC will generate code that follows
the standard calling conventions for our task-specific nested
function, which saves the caller-saved registers before a fork.

For callee-saved registers, we add a special instruction
clobber_regs to accompany the calls to fibril_fork
and fibril_join. clobber_regs is an inline assembly
instruction that tells the compiler that the prior call may
modify callee-saved registers, causing the compiler to gener-
ate code that saves these registers before the call.

Fibril only explicitly saves a frame’s frame pointer, %rbp,
its stack pointer, %rsp, and its return address, %rip. These
values are accessed using GNU builtin functions. Since Fib-
ril does not use a custom compiler frontend, it requires these
compiler extensions to generate nested functions, clobber
registers, and read the value of the frame pointer, stack
pointer, and return address of a frame. However, these ex-
tensions are fairly standard; both the GNU C Compiler and
the Intel C Compiler support these features.

4.3 Fibril’s work-stealing scheduler
We divide the address space of a Fibril program into two

spaces: the application space and the scheduler space. A
Fibril program executes its application code — user-defined
functions and code generated by Fibril’s macros — in the
application space. For routines of Fibril’s work-stealing
scheduler, shown in Listing 3, Fibril executes them in the
scheduler space. In particular, each worker uses an alter-
native stack to execute the work-stealing scheduler to avoid
collision with threads executing the application code. The
_fibril_resume function, called when a pop fails (line 39)
or at a _fibril_join (line 47), is the entry point to the
scheduler space; it switches a worker’s context to the sched-
uler space and invokes schedule. We omit the code for
_fibril_resume from this paper.

In Fibril, each worker is uniquely identified using a thread-
local variable _wid. Fibril represents a worker’s state using
a pair (stack, deque). A worker’s stack is a pointer to
the stack the worker should use to execute application code.
A worker uses its deque to push and pop tasks. We omit
the implementation of Fibril’s deque, including push, pop,
and steal, since it is the same as Cilk’s deque [8], which
employs Dijkstra’s protocol for mutual exclusion [7].

A Fibril frame (defined in line 18) contains a count that
records the number of pending child tasks of the frame. A
frame’s count is zero initially. When a frame is stolen for
the first time, the thief increments the frame’s count twice
(line 88 and 89) to account for both the parent frame and
the child task that was forked earlier.

When a worker completes a child task and attempts to
resume its parent by calling _fibril_resume, it enters
the scheduler space and calls schedule. schedule first
locks the frame the worker is attempting to resume, then
decrements the frame’s count.

If the frame still has pending children, i.e., count is larger
than zero, the scheduler has to perform randomized stealing
to find a task for the worker to execute. Before the worker
starts stealing, however, it should check whether the sus-
pended frame resides on top of its current stack (line 62). If
the frame is on top of the worker’s stack, the worker unmaps
the unused portion of its current stack and clears the stack
from its worker state (line 64). The unused space starts at
the stack’s address and ends at the page boundary that is
just above the top of the stack. It is safe to unmap unused
memory pages of the stack because no worker will access the
unused space until one resumes the suspended frame. When

55 typedef struct { deque_t * deque; void * stack; } worker_t;
56 __thread int _wid;
57 worker_t * _workers;

58 void schedule(fibril_t * f) {
59 worker_t * w = _workers[_wid];
60 lock(f);
61 if (--f->count > 0) {
62 if (f->stack == w->stack) {
63 unmap(f->stack, PAGE_ALIGN(f->state.rsp));
64 w->stack = NULL;
65 }
66 unlock(f);
67 random_steal(w);
68 } else {
69 unlock(f);
70 if (f->stack != w->stack) {
71 put_stack_into_pool(w, w->stack);
72 remap(f->stack, PAGE_ALIGN(f->state.rsp));
73 w->stack = f->stack;
74 }
75 execute(f, f->state.rsp);
76 }
77 }

78 void random_steal(worker_t * w) {
79 worker_t * victim; fibril_t * f;
80 while (1) {
81 victim = _workers[rand() % NPROCS];
82 lock(v->deque);
83 f = steal(victim->deque);
84 if (f == NULL) unlock(victim->deque);
85 else break;
86 }
87 lock(f); unlock(victim->deque);
88 if (f->count++ == 0) {
89 f->count += 1;
90 f->stack = victim->stack;
91 }
92 unlock(f);
93 if (!w->stack) w->stack = take_stack_from_pool(w);
94 execute(f, w->stack + STACK_SIZE);
95 }

96 void execute(fibril_t * f, void * rsp) {
97 set_stack_pointer(rsp);
98 set_frame_pointer(f->state.rbp);
99 set_return_address(f->state.rip);

100 }

Listing 3: The implementation of Fibril’s scheduler.

a worker steals a frame, it will take a stack from a stack pool
to execute the stolen frame (line 93).

If all children of the frame that the scheduler is trying
to resume have completed, i.e., count becomes zero, the
worker can resume the frame. If the stack the frame resides
on is not the stack the worker is using (line 70), the worker
puts its current stack into the stack pool and remaps the
memory pages of the suspended stack. Then it uses the
frame’s stack to execute the frame.

Eventually, the scheduler will call execute on a frame
to transfer the control back to the application space and
execute the frame. Note that if the frame is a stolen frame,
the worker will execute the frame using a stack pointer that
points to the top of a new stack (line 94).

Implementation of unmap/remap.
There are two ways to implement the unmap/remap rou-

tine in Listing 3. Many operating systems provides an
interface to change the memory mapping of a virtual ad-
dress range. For example, Linux provides an mmap system
call that changes the memory mapping of a virtual address

range. To unmap, one can call mmap to change the mappings
of the unused address space to an empty dummy file. Since
the dummy file will not be accessed, these mappings will not
consuem physical memory or incur I/O activity. Note that
we cannot implement unmap by calling munmap to free the
unused memory pages because the operating system (OS)
may give the unused virtual address space back to the mem-
ory allocator. Changing the mappings of the unused stack
space to a dummy file preserves the address space but frees
the physical memory pages. In remap, we can call mmap
again to obtain anonymous pages from the OS for the un-
used portion of the stack.

This approach assumes that a multithreaded process’s un-
derlying virtual memory subsystem allows operations that
change non-overlapping memory regions of a shared address
space to execute concurrently. Unfortunately, most oper-
ating systems today serialize these operations. Specifically,
widely used OS kernels, such as Linux and FreeBSD, use
a single lock per shared address space. System calls that
change the shared address space, such as mmap, need to ac-
quire the lock before applying changes.4 Therefore, mmap
will become a bottleneck for Fibril, since multiple workers
may call unmap/remap at the same time on different stacks.

On Unix-like systems, one can implement unmap using
the madvise system call with the MADV_DONTNEED flag.
madvise(..., MADV_DONTNEED) tells the OS that the
memory pages of a specified address range are no longer
needed and the OS may choose to free the pages. This
approach gives the OS the flexibility to free the memory
pages lazily, which may yield better performance if the OS
has memory to spare and does not need to reclaim the
memory pages.5 More importantly, calling madvise with
MADV_DONTNEED does not acquire the address space lock
to free the memory pages, which permits concurrent unmap
calls. When unmap is implemented using madvise, remap
becomes an no-op. Accessing the unmapped address range
will trigger a page fault then the OS will allocate a memory
page for the accessed address.

4.4 Theoretical bounds
Because Fibril changes the memory mapping to conserve

memory footprint, there is a gap between a Fibril program’s
physical memory and virtual address usage. We analyze
bounds on the physical and virtual space separately. We
measure space in memory pages, the size of which we leave
unspecified. We define the stack depth of a Fibril program
to be the number of memory pages on the stack in a serial
execution of the program. We define the Fibril depth of a
Fibril program to be the maximum number of Fibril frames
on any path from the root to a leaf of the program’s invo-
cation tree. We show the following theorems regarding the
space and time requirements of a Fibril program.

Theorem 4.1. For a Fibril program with stack depth S1

and Fibril depth D, the Fibril scheduler can execute the pro-

4 In principle, if two mmaps operate on non-overlapping
memory regions, these operations should be perfectly paral-
lelizable. Clements et al. applied this principle in the design
of a scalable address space for multithreaded applications,
called RadixVM [6].
5Currently, the Linux implementation of madvise(...,
MADV_DONTNEED) always frees the memory pages. But this
may change in the future.

gram on P processors using DPS1 pages of virtual address
space.

Proof. Fibril maintains the busy-leaves property. This
implies that, at any given time, the number of leaves in the
invocation tree is bounded by P . The stack frames along a
path from the root of the invocation tree to a leaf may reside
on different stacks. Since a path changes to a different stack
only when resuming a stolen Fibril frame, each path may
span at most D stacks. Moreover, because each of these
stacks may grow to be as large as S1, each path may use
DS1 virtual address space. Therefore, the bound on the
virtual address space is DPS1.

Although the bound on virtual address space can be very
large for an execution with a deep Fibril depth, it is prac-
tical on 64-bit systems because the virtual address space is
significantly larger than any realistic value of DPS1.

Theorem 4.2. For a Fibril program with stack depth S1

and Fibril depth D, the Fibril scheduler can execute the pro-
gram on P processors using P (S1 + D) pages of physical
memory.

Proof. Because the Fibril scheduler maintains the busy-
leaves property, the number of leaves in the program’s invo-
cation tree is bounded by P . For a path from the root of
the invocation tree to a leaf, the stack frames on the path
may span multiple stacks. Since a path can only change to
a different stack at a Fibril frame, each path may span at
most D stacks. Because Fibril unmaps the unused pages
of a stack, each dormant stack only contains memory pages
that hold stack frames. Because stack frames may not align
with page boundaries, there may be a partially unused page
at the top of each stack. Since there are at most D stacks,
there can be at most D such partially unused pages on a
path. Since the stack frames on each path may consume up
to S1 pages, the total number of pages a path may use is
S1 + D. Therefore, the program uses at most P (S1 + D)
memory pages.

Fibril’s physical memory bound is a strong bound. Com-
paring with Blumofe and Leiserson’s space bound, it only
adds a constant overhead D per processor, staying well be-
low the border of practicality. Fibril’s physical memory
bound is also a loose bound since it counts every non-leaf
frame in the invocation tree more than once. Moreover, we
should not expect that every Fibril frame will be stolen. For
a program with sufficient parallelism, the number of steals
is usually much less than the number of forks.

Theorem 4.3. For a Fibril program with work T1 and
span T∞, the Fibril scheduler can execute the program on
P processors in expected time Tp ≤ T1/P + c∞T∞, where
c∞ = O(S1 + D).

The proof of Fibril’s time bound needs complex theoreti-
cal analysis that is beyond the scope of this paper. Fibril’s
time bound trades the constant span overhead c∞ on the
span term of Cilk’s time bound for an overhead that is lin-
ear in the program’s depth S1 +D. This increased overhead
reflects the cost of unmapping and remapping a stack’s un-
used memory pages. We consider the cost of changing the
mappings of an address space to be linear in the number of
mappings it changes. In the worse case, every steal might

Table 1: The description of the 12 benchmarks.
Benchmark Input Description
cholesky 4000/40000∗ Cholesky decomposition
fft 226 Fast Fourier transformation
fib 42 Recursive Fibonacci
heat 2048 × 500 Jacobi heat diffusion
integrate 104(ε = 10−9) Quadrature adaptive integration
knapsack 32 Recursive knapsack
lu 4096 LU decomposition
matmul 2048 Matrix multiply
nqueens 14 Count ways to place N queens
quicksort 108 Parallel quicksort
rectmul 4096 Rectangular matrix multiply
strassen 4096 Strassen matrix multiply
∗: 40000 is the number of non-zero values in the matrix.

cause the scheduler to change the mappings of a worst-case
stack of depth S1+D. One may prove Fibril’s time bound by
applying the proof techniques of Blumofe and Leiserson [4]
or those of Arora et al. [2].

Like the space bound, Fibril’s time bound is also a loose
bound because not every steal will cause an unmap action.
Fibril does not unmap a stack if the worker that executes
on the stack completes later than the thief who steals the
frame on top of the stack. The bound is also a strong
bound; it guarantees that a program with sufficient par-
allelism achieves near-perfect linear speedup. We consider a
program has sufficient parallelism if T1/T∞ � O(S1 +D)P .

5. EVALUATION
To evaluate Fibril’s performance, we implemented Fibril

on an x86-64 architecture. There are three concerns that we
investigate in our empirical study:

1. how Fibril’s performance compares with other work-
stealing runtime systems,

2. whether Fibril’s unmap/remap routine incurs signifi-
cant overhead, and

3. how effective is Fibril’s unmap/remap in reducing the
memory footprint of a parallel program.

To address these concerns, we compare Fibril with Intel Cilk
Plus [16] and Thread Building Blocks (TBB) [15]. Because
Cilk Plus’s work-stealing scheduler is similar to that of Fib-
ril, it serves as a fair point of comparison. Intel TBB is
similar to Fibril because it is also a library-based imple-
mentation of a work-stealing scheduler. We evaluate Fibril
using 12 benchmarks. Table 1 briefly describes each bench-
mark and lists the input size we used for each of them in
our experiments. These benchmarks are a representative
subset of the benchmarks used in previous studies of work-
stealing. We evaluate two variants of Fibril: Fibril and
Fibril (w/o unmap), where Fibril implements unmap us-
ing madvise(..., MADV_DONTNEED) and Fibril (w/o un-
map)’s unmap is an no-op. In both versions, remap is an
no-op.

General Setup.
We ran all experiments on an Intel Haswell system with

two 18-core 2.3 GHz CPUs with 2-way simultaneous multi-
threading on each core, with a total of 72 hardware threads.
The total memory available on the system is 128 GBytes.
The operating system ran on the machine is Red Hat En-
terprise Linux Server 7.0 (Maipo) with kernel version 3.16.7.
All code, both Fibril and the benchmarks, are compiled with

T1 T1:Fibril T1:CilkPlus T1:TBB Tserial /
T1:Fibril

Tserial /
T1:CilkPlus

Tserial/
T1:TBB

cholesky 7.502119 10.5962 12.2336 19.0256 0.71 0.61 0.39 1.2

fft 11.766056 12.1489 12.5993 13.2494 0.97 0.93 0.89 1.0

fib 0.889965 9.9354 18.4232 59.1581 0.09 0.05 0.02 1.9

heat 0.933821 0.9417 0.9740 1.0309 0.99 0.96 0.91 1.0

integrate 2.868998 7.7896 10.5763 28.3994 0.37 0.27 0.10 1.4

knapsack 0.010319 0.0361 0.0530 0.1523 0.29 0.19 0.07 1.5

lu 14.213111 14.2821 14.4080 14.9937 1.00 0.99 0.95 1.0

matmul 12.282237 19.4298 33.0960 48.4187 0.63 0.37 0.25 1.7

nqueens 4.318736 11.5905 17.0217 27.2005 0.37 0.25 0.16 1.5

quicksort 9.010416 10.8646 17.5003 21.2636 0.83 0.51 0.42 1.6

rectmul 22.074326 22.9369 23.4042 25.4532 0.96 0.94 0.87 1.0

strassen 11.845931 11.7415 11.7862 11.7800 1.01 1.01 1.01 1.0

R
el

at
iv

e
se

ria
l p

er
fo

rm
an

ce

0.0

0.2

0.4

0.6

0.8

1.0

ch
oles

ky fft fib hea
t

in
te

gra
te

kn
ap

sa
ck lu

m
at

m
ul

nquee
ns

quick
so

rt

Tserial / T1:Fibril Tserial / T1:CilkPlus Tserial/T1:TBB

1

Figure 3: The relative performance on one thread.

GCC 5.2.0. Since GCC 5.2.0 comes with native support for
Cilk Plus, we also used it to compile the Cilk Plus versions
of the benchmarks. We used Intel TBB 4.4 Update 4 in our
experiments. We compiled all code with -O2 optimization.
We performed all experiments ten times and recorded the
mean execution time and the maximum stack usage of all
ten runs. The standard deviation of our results is negligi-
ble. All experiments use 4KB memory pages and 1M stacks.
Cilk Plus by default limits the maximum number of stacks
its workers can use to 2400. We do not pin threads to phys-
ical cores to allow the OS to migrate workers among cores
when it sees an oppertunity.

Serial Performance.
Figure 3 shows the relative performance of Fibril, Cilk

Plus, and TBB versions of the benchmark on a sin-
gle thread. We normalize each performance number
(1/T1:Fibril, 1/T1:CilkPlus, and 1/T1:TBB) with the per-
formance of the serial version of the benchmark (1/Tserial).
A number below one indicates that the benchmark’s paral-
lel version is slower than its serial version. For instance, the
performance of matmul using Fibril on one thread is ap-
proximately 40% slower than the performance of the serial
matmul. For all benchmarks we tested, Fibril outperforms
both Intel Cilk Plus and TBB. In particular, The Fibril ver-
sions of fib, integrate, knapsack, matmul, nqueens,
and quicksort outperform those of Cilk Plus by 1.9×,
1.3×, 1.5×, 1.7×, 1.4×, and 1.6×, respectively, and those
of TBB by 6.0×, 3.6×, 4.2×, 2.5×, 2.3×, and 2.0×, re-
spectively. These results indicate that Fibril’s calling con-
ventions have lower overhead than those of Cilk Plus. Since
fft, heat, lu, rectmul, and strassen perform a large
amount of floating point computation within each task, the
serial overhead of fork and join operations becomes insignif-
icant. Therefore, the performance of different versions of
these benchmarks is almost the same.

Parallel Performance.
Figure 4 shows the performance of the benchmarks on

1–72 threads. We assume the ideal speedup a bench-
mark achieves is P× on P threads. Fibril greatly out-
performs both Cilk Plus and TBB for most of the bench-
marks. In particular, the Fibril versions of choleskey,
fib, integrate, knapsack, matmul, and nqueens out-
perform those of Cilk Plus by 1.4×, 2.8×, 1.8×, 2.2×,
2.3×, and 2.1×, respectively, and those of TBB by 3.0×,
7.9×, 4.5×, 4.8×, 4.3×, and 2.8×, respectively. For other

1 2 4 8 16 32 64 72

cholesky Fibril 10.5962 5.3971 2.8982 1.8922 0.9636 0.5307 0.4493 0.4458

7.502119 CilkPlus 12.2336 6.1593 3.3285 1.8362 1.1602 0.7392 0.5960 0.6029

0.1

1

10

100

Fibril Cilk Plus TBB Ideal speedup Fibril (w/o unmap)

1

10

100

0.01

0.1

1

10

100

1

10

100

0.1

1

10

100

0.01

0.1

1

10

100

1

10

100

0.1

1

10

100

0.1

1

10

100

0.1

1

10

100

1

10

100

1 10 100
1

10

100

1 10 100

quicksort

matmul

knapsack

heat

fftcholesky

fib

integrate

lu

nqueens

rectmul strassen

1

Figure 4: The speedup on 1–72 threads.
The X axis are the number of threads, and Y axis values are
Tserial/TP , where TP is the execution time on P threads.

benchmarks, their Fibril versions perform better or similar
to their Cilk Plus and TBB versions. Since Cilk Plus’s lim-
itation on the total number of stacks a program can use is
never reached in our experiments, Fibril’s speedup over Cilk
Plus is a result of Fibril’s better serial performance. Fig-
ure 4 also shows that the performance difference between
Fibril and Fibril (w/o unmap) is negligible. This indicates
that our approach to bound the memory usage is of minimal
overhead.

Table 2 lists the average number of key actions performed
on 72 threads. Table 2 shows that not every successful steal
in Fibril will cause an unmap operation. The percentage
of steals that cause an unmap in Fibril varies from 33% to
92% among the 12 benchmarks. Table 2 also shows that
Fibril’s unmap results in an increase in the number of page
faults. This is because a page that is returned to the OS
may be accessed again when the suspended frame on the
stack is resumed. However, the increase in the number of
page faults does not incur significant overhead because the
Fibril (w/o unmap) version performs the same as Fibril as
shown in Figure 4.

Table 2: Profile of key operations on 72 threads.
steals unmaps page faults
Fibril Fibril Fibril Cilk Plus TBB

cholesky 6568K 2795K 89K 31K 193K
fft 81K 63K 2392K 1475K 346K
fib 20K 12K 6K 3K 9K
heat 579K 452K 10K 10K 9K
integrate 22K 19K 5K 3K 5K
knapsack 13K 12K 1K 2K 1K
lu 2440K 1384K 41K 2K 5K
matmul 92K 62K 13K 10K 69K
nqueens 37K 12K 19K 3K 4K
quicksort 7263K 4005K 1299K 693K 66K
rectmul 43K 33K 3012K 2712K 6472K
strassen 25K 9K 9336K 9494K 23926K

Table 3: Stack space usage in Fibril.
Application D S1 S1 + D S72/72
cholesky 10 2 12 4.82
fft 19 5 24 13.90
fib 41 3 44 8.46
heat 12 1 13 4.49
integrate 32 3 35 8.76
knapsack 32 3 35 5.71
lu 8 2 10 4.92
matmul 10 2 12 4.90
nqueens 14 3 17 6.19
quicksort 69 4 73 9.89
rectmul 24 3 27 9.31
strassen 6 2 8 4.79

Stack Space Utilization.
Table 3 shows the stack footprint of the benchmarks us-

ing Fibril on 72 threads. For comparison, we also list the
theoretical space bound per thread (S1 + D) in the table.
Overall, Fibril’s actual stack usage is well below its theo-
retical bound. Specifically, all of the benchmarks use less
than 60% of the stack space of their theoretical bound. This
confirms that the space bound in Theorem 4.2 is loose.

Table 4 shows the resident set size (RSS) and stack us-
age of the benchmarks on 72 threads. The RSSes of Fibril
benchmarks are similar to those of Cilk Plus. This may be
because Fibril uses more stacks than Cilk Plus to execute
these computations. Comparing with TBB, Fibril uses much
less memory to execute the same computations.

6. CONCLUSIONS
It is very important for a work-stealing framework to im-

plement a cactus stack that provides interoperability and
strong bounds in both time and space. Sacrificing any one
of the three criteria can compromise a work-stealing frame-
work’s usability or performance. The TLMM approach by
Lee et al. [10] is not a viable solution for today’s commodity
operating systems because it requires custom OS support
that is unavailable. Our cactus stack implementation is the
first solution to the cactus stack problem that is practical
and efficient for use in common systems. We have demon-
strated its practicability and efficiency both theoretically
and empirically in this paper. Our theoretical bounds ensure
a Fibril program’s memory usage stays within the range of
practicability and guarantee near-linear speedup given suffi-
cient parallelism. Our empirical evaluation shows that Fib-

Table 4: The RSS and stack usage on 72 threads.
∆RSS / Max RSS # of stacks

Fibril C.P. TBB Fibril C.P.
cholesky 84/95 81/91 173/184 346 333
fft 1540/2055 1546/2060 1639/2154 334 321
fib 3/6 3/5 108/111 315 297
heat 36/65 31/31 139/175 323 314
integrate 3/6 3/5 97/100 326 310
knapsack 3/6 3/5 106/109 316 326
lu 3/134 3/133 92/224 356 348
matmul 11/54 14/57 123/167 356 348
nqueens 5/5 3/3 113/116 352 314
quicksort 385/769 391/775 883/883 340 323
rectmul 513/772 680/938 1026/1285 335 333
strassen 2434/2694 2762/3020 2603/2862 343 329

C.P.=Cilk Plus. The RSS are reported in MBs. ∆ RSS=the
incremental RSS during the computation; this excludes the
physical memory used for input data and libraries.

ril’s approach to bound memory usage is of minimal over-
head and Fibril outperforms the-state-of-art work-stealing
frameworks on most benchmarks.

7. ACKNOWLEDGMENTS
This work was supported in part by the DOE Office of

Science’s Advanced Scientific Computing Research Program
through Cooperative Agreement number DE-SC0008883.
Experiments were performed on a dual-socket Intel Haswell
system on loan from Intel.

8. REFERENCES
[1] K. Agrawal, I.-T. A. Lee, and J. Sukha. Brief

announcement: Serial-parallel reciprocity in dynamic
multithreaded languages. In Proceedings of the
Twenty-second Annual ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA
’10, pages 186–188, New York, NY, USA, 2010. ACM.

[2] N. S. Arora, R. D. Blumofe, and C. G. Plaxton.
Thread scheduling for multiprogrammed
multiprocessors. In Proceedings of the Tenth Annual
ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’98, pages 119–129, New York,
NY, USA, 1998. ACM.

[3] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger,
Y. Lin, F. Massaioli, X. Teruel, P. Unnikrishnan, and
G. Zhang. The design of OpenMP tasks. Parallel and
Distributed Systems, IEEE Transactions on,
20(3):404–418, March 2009.

[4] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. J.
ACM, 46(5):720–748, Sept. 1999.

[5] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. X10: An object-oriented approach to
non-uniform cluster computing. In Proceedings of the
20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA ’05, pages 519–538, New
York, NY, USA, 2005. ACM.

[6] A. T. Clements, M. F. Kaashoek, and N. Zeldovich.
RadixVM: Scalable address spaces for multithreaded
applications. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages
211–224, New York, NY, USA, 2013. ACM.

[7] E. W. Dijkstra. Solution of a problem in concurrent
programming control. Commun. ACM, 8(9):569–,
Sept. 1965.

[8] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language.
In Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and
Implementation, PLDI ’98, pages 212–223, New York,
NY, USA, 1998. ACM.

[9] D. Lea. A Java fork/join framework. In Proceedings of
the ACM 2000 Conference on Java Grande, JAVA ’00,
pages 36–43, New York, NY, USA, 2000. ACM.

[10] I.-T. A. Lee, S. Boyd-Wickizer, Z. Huang, and C. E.
Leiserson. Using memory mapping to support cactus
stacks in work-stealing runtime systems. In
Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques,
PACT ’10, pages 411–420, New York, NY, USA, 2010.
ACM.

[11] D. Leijen, W. Schulte, and S. Burckhardt. The design
of a task parallel library. In Proceedings of the 24th
ACM SIGPLAN Conference on Object Oriented
Programming Systems Languages and Applications,
OOPSLA ’09, pages 227–242, New York, NY, USA,
2009. ACM.

[12] C. E. Leiserson. The Cilk++ concurrency platform. In
Proceedings of the 46th Annual Design Automation
Conference, DAC ’09, pages 522–527, New York, NY,
USA, 2009. ACM.

[13] M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell.
System V application binary interface AMD64
architecture processor supplement.
http://www.x86-64.org/documentation/abi.pdf,
October 2013.

[14] J. M. Mellor-Crummey and M. L. Scott. Algorithms
for scalable synchronization on shared-memory
multiprocessors. ACM Trans. Comput. Syst.,
9(1):21–65, Feb. 1991.

[15] J. Reinders. Intel Threading Building Blocks:
Outfitting C++ for Multi-core Processor Parallelism.
O’Reilly Media, Inc., 2007.

[16] A. D. Robison. Composable parallel patterns with
Intel Cilk Plus. Computing in Science and Engg.,
15(2):66–71, Mar. 2013.

[17] J. Sukha. Brief announcement: A lower bound for
depth-restricted work stealing. In Proceedings of the
Twenty-first Annual Symposium on Parallelism in
Algorithms and Architectures, SPAA ’09, pages
124–126, New York, NY, USA, 2009. ACM.

[18] D. B. Wagner and B. G. Calder. Leapfrogging: A
portable technique for implementing efficient futures.
In Proceedings of the Fourth ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, PPOPP ’93, pages 208–217, New York,
NY, USA, 1993. ACM.

	Introduction
	Background
	Related Work
	Fibril
	Fibril's API
	Fibril's calling conventions
	x86-64's linear stack and Fibril's cactus stack
	Enabling context switch in Fibril

	Fibril's work-stealing scheduler
	Theoretical bounds

	Evaluation
	Conclusions
	Acknowledgments
	References

