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ABSTRACT

Function Shipping in a Scalable Parallel Programming Model

by

Chaoran Yang

Increasingly, a large number of scientific and technical applications exhibit dy-

namically generated parallelism or irregular data access patterns. These applications

pose significant challenges to achieving scalable performance on large scale parallel

systems. This thesis explores the advantages of using function shipping as a language

level primitive to help simplify writing scalable irregular and dynamic parallel ap-

plications. Function shipping provides a mechanism to avoid exposing latency, by

enabling users ship data and computation together to a remote worker for execu-

tion. In the context of the Coarray Fortran 2.0 Partitioned Global Address Space

language, we implement function shipping and the finish synchronization construct,

which ensures global completion of a set of shipped function instances. We demon-

strate the usability and performance benefits of using function shipping with several

benchmarks. Experiments on emerging supercomputers show that function shipping

is useful and e↵ective in achieving scalable performance with dynamic and irregular

algorithms.
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Chapter 1

Introduction

Writing shared-memory parallel programs is generally considered easier than writing

parallel programs using a distributed memory model, in which accessing remote data

is achieved through explicit communication. However, the inability to specify, man-

age, and exploit locality when using a shared-memory programming models hinders

their application in scientific and technical computing, where high performance and

scalability is required. For parallel scientific and technical applications, the message

passing model is still the pervasive parallel programming model being used on super-

computers and clusters today. The Message Passing Interface (MPI) [1] is a standard

API that supports programming in the message passing model.

The Partitioned Global Address Space (PGAS) model has been developed to

bridge the gap between the ease of programming of shared-memory models and the

performance and scalability of message passing models. In the PGAS model, threads

or processes share a global address space. For convenience, we refer to all active

entities, i.e., threads and processes, as simply threads. The shared address space

is partitioned into local and remote portions. Figure 1.1 depicts an example of a

partitioned global address space with four threads. Within it, each thread’s local ad-

dress space is partitioned into private and shared portions. Only a local thread may

reference its private area, whereas the shared area may be accessed by any thread.

A thread accessing data located in other threads’ shared space pays a much higher

cost than accessing local data. The list of PGAS languages includes but is not lim-
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private private private private

Shared address space

1 2 3 4

Figure 1.1 : An example of an address space with 4 threads in PGAS model

ited to: Unified Parallel C (UPC) [2], Titanium [3], Coarray Fortran [4], X10 [5],

and Chapel [6]. The PGAS model provides both performance and usability benefits

for implementing parallel applications on large distributed systems. By having each

thread primarily compute on data in its local portion of the address space, programs

written in PGAS model are able to achieve good performance. The PGAS model

also simplifies programming by adopting a one-sided communication model, where a

thread can read or modify remote data without any explicit involvement of a thread

on the remote node.

However, many algorithms still require great programming e↵ort to achieve reason-

able performance on large-scale parallel systems. Algorithms that feature dynamically

generated computation or data access patterns where it is di�cult to exploit locality

are particularly di�cult to map onto scalable parallel systems. Dynamically gener-

ated computation prevents work from being pre-partitioned equally among threads.

Algorithms with dynamic generated parallelism require constant, dynamic load bal-

ancing to maintain high e�ciency. Algorithms that have little data locality su↵er

from the fact that the cost of accessing remote data on distributed memory systems
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is often several magnitudes higher than that of local computation. Programs with low

locality often spend more time waiting for data than actually performing computa-

tion on it. Examples of dynamic and irregular algorithms include the Self-Consistent

Field method [7]— a technique commonly used in ab initio computational chemistry

that involves irregular data access and requires dynamic load balancing while results

are accumulated, and MADNESS (Multiresolution ADaptive NumErical Scientific

Simulation) [8]— a framework that uses adaptive multiresolution analysis methods

in multiwavelet bases for scientific simulation, where the size and shape of a resulting

task tree depend on a user-specified analytic function.

To help achieve scalable performance for irregular and dynamic parallel applica-

tions, this thesis explores the e↵ectiveness of using function shipping, a mechanism

that allows moving data and computation together between threads, in the PGAS

model. Function shipping provides new opportunity for users to better manage dy-

namic generated computation and avoid exposing communication latency. Taking a

simple load balancing problem depicted in Figure 1.2 as an example, when thread

p runs out of work locally and tries to steal work from a randomly-picked thread

q, it sends out request to q to check whether q has work left (req A). If q has no

work, q must reply back to p (rep A) that it has no work, so that p can try to steal

from another thread r (req B). p incurs the cost of a round trip across the network

(req A & rep A) for each steal attempt it makes until work is found on a thread;

another round trip (req B & rep B) is needed to obtain the work. With function

shipping, however, thread p may ship the action needed after detecting q’s work pool

status along with its initial request (reqf C).⇤ Thus, the attempt of stealing from

thread r may be made by q directly (reqf D), thereby avoiding the intervening reply

⇤reqf denotes shipping a function as a request
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p q r p q r

Without function shipping With function shipping

req A

req B

rep B

rep A

reqf C

reqf D

rep E

Figure 1.2 : An example of function shipping avoiding exposing latency in a simple
load balancing problem

back to p. If a thread attempts to steal w times before it finds work, the approach

without using function shipping costs 2w messages in the worst case, whereas the

function shipping approach uses only w + 1 messages, which avoids exposing the

latency of w � 1 messages.

This thesis explores the integration of function shipping into the Coarray Fortran

2.0 (CAF 2.0) [9] language under development at Rice University. CAF 2.0 is a

rich set of PGAS extensions to Fortran 2003. A detailed description of the CAF 2.0

language is presented in Section 3.2. Our implementation of function shipping is build

upon Berkeley’s GASNet communication system [10]. We show that the performance

of our implementation of function shipping in CAF 2.0 is comparable to MPI’s send

& receive routines and Active Messages [11] in GASNet. We demonstrate its utility

by using it for load balancing in the implementation of an Unbalanced Tree Search

(UTS) benchmark [12].

Our design of function shipping enables a shipped function to perform the full
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range of operations as a normal function in CAF 2.0. In particular, a shipped function

may spawn more functions and ship them to others in CAF 2.0. Given the SPMD

nature of CAF 2.0 programs, where computation originates from multiple threads

causing no single thread knowing the global status of the system, the flexibility of

spawning functions from a shipped function complicates the problem of detecting

completion of these dynamically spawned functions. Solutions to detecting termi-

nation of dynamic computation fall in a class of algorithms known as termination

detection [13]. To address this, we developed a finish construct, a block construct

that guarantees completion of asynchronous operations, i.e., shipped functions within

it. Our finish construct is inspired by X10 programming language, but di↵ers from

X10’s construct with the same name because we adapted it to fit into CAF 2.0’s

SPMD programming model. We also introduce a scalable distributed global termi-

nation algorithm that is used by our finish construct. Our termination detection

problem exhibits two desirable properties: 1) it requires only a constant amount of

space per thread; 2) it detects global termination using only a bounded number of

rounds of speculative waves.

1.1 Statement of thesis

Adding function shipping and the finish synchronization construct, which ensures

global completion of a set of shipped function instances, to a PGAS programming

language improves the expressiveness of the language and helps the language de-

liver high performance for dynamic and irregular algorithms on large-scale parallel

systems. We support this thesis by integrating function shipping and the finish con-

struct into the Coarray Fortran 2.0 language. We demonstrate the utility of function

shipping and the finish construct by using them to implement several benchmarks
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and algorithms. Evaluating these benchmarks and algorithms on di↵erent supercom-

puters and clusters shows that function shipping and the finish construct simplifies

programming and increases performance of applications with dynamically generated

parallelism and irregular data access patterns.

1.2 Thesis outline

The rest of the thesis is organized as follows. Chapter 2 discusses previous work

related to function shipping and global termination detection. Chapter 3 introduces

CAF 2.0 and its features; this background provides context for our extensions to

CAF 2.0. Chapter 4 describes in detail our design and implementation of function

shipping and the finish construct in CAF 2.0. Chapter 5 evaluates their performance

and usability with benchmarks and algorithms. Chapter 6 concludes and discusses

topics for future work.
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Chapter 2

Related Work

This chapter summarizes previous work related to the idea of transfer computation

and data to a di↵erent active entity, i.e., thread or process, for execution. Then,

it discusses several termination detection algorithms used by di↵erent parallel pro-

gramming systems and languages. Where appropriate, our approach is compared and

contrasted with existing approaches.

2.1 Function shipping

The idea of transferring computation and data to a di↵erent active entity to simplify

programming of dynamic irregular parallel applications has been explored by many

programming languages and systems. We group them into three categorizes simply

for the convenience of discussion.

First, in the realm of distributed computing, Remote Procedure Call (RPC) [14]

is used for invoking a procedure in a di↵erent address space. Examples of popular

RPC systems include Java Remote Method Invocation [15] and Open Network Com-

puting RPC [16]. RPC systems are designed for usability, and more importantly to

support dynamic dispatching, interface discovery, and security features, often at the

expense of performance. They are not suitable to be applied to scientific computing

where high performance is required. ARMI [17] and Charm++ [18] are two program-

ming systems that introduced the RPC-style communication into high performance



8

computing. These RPC and RPC-related systems expose either functions or objects

and their methods for remote access. Compared with these systems, our design of

function shipping exposes all functions and subroutines in a program as candidates

for remote invocation.

In the realm of high performance computing, Active Messages (AM), originally

developed by von Eicken et al. in 1992 [11] is the widely adopted communication pat-

tern in the design of several runtime systems and libraries, including GASNet [10],

IBM’s Deep Computing Messaging Framework (DCMF) [19], IBM’s Low-level Ap-

plication Programming Interface (LAPI) [20], and the Asynchronous PGAS runtime

system [21]. These active message systems have a low-level interface and have restric-

tions on their message handlers’s capability to perform long-lived computations or

communicate. In particular, they forbid an active message handler to communicate

with other processes except to send a reply message to its source process. Also, they

forbid an active message handler to make blocking calls. These restrictions are used

to avoid deadlocks [11]. Because of these restrictions and the fact that they are de-

signed as low-level transportation layers for higher level systems or languages to build

upon, they are unsuitable for use as a user-level communication layer. AM++ [22],

developed by Willcock and Hoefler et al., relaxed the restriction to send only a re-

ply message for more flexibility. It supports runtime optimizations such as message

combining and filtering for better performance. Optimistic Active Messages [23] in-

troduced a technique that allows an active message to run inside an interrupt handler

but revert to creating a separate thread to handle the active message when the active

message makes a forbidden operation such as a blocking call. Our design of function

shipping adopts the method of Optimistic Active Message to avoid the overhead of

switching threads whenever possible. We also provides the flexibility of arbitrary
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actions within a shipped function. Unlike AM++ and Optimistic Active Messages,

which provide library-based support for function shipping, we explore the integration

of function shipping into a PGAS programming language.

Several parallel programming languages have adopted concepts related to func-

tion shipping to help better manage dynamic task parallelism by supporting language

primitives to create asynchronous tasks. The future construct originally introduced

by Multilisp [24] serves the purpose of both creating new tasks and synchronizing

among them. A statement future X immediately returns a future object and may

evaluate the expression X later. A read operation to the future object will be sus-

pended until the evaluation of X is completed. Java and X10 also include future

as a construct to support task parallelism. In Cilk [25], a spawn statement spawns

a function and creates a continuation⇤ of the program that it provides to the run-

time scheduler. Another thread may then steal the continuation frame and execute

concurrently with the spawned function. Although an implementation of Cilk for

distributed memory systems was attempted [26], it is best suited for systems with

hardware support for shared memory. X10 and Habanero Java [27] extend Cilk’s

spawn statement by enables spawning of arbitrary statements or blocks of statements

as a new parallel task. They also enable spawning new tasks across nodes by using a

place as the optional at argument to an async; the place specifies where a computa-

tion should execute. Chapel provides a begin primitive similar to the async in X10

and Habanero Java. The functionality of creating new tasks across locales, however,

is not implemented as of January 2012. Our work on function shipping is di↵erent

from these language primitives mentioned above in that it is tightly integrated with

⇤
A continuation is the calling stack and program counter of a program—the information needed

for resuming execution from the program’s current state.
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the other features of the CAF 2.0 language such as asynchronous operations and syn-

chronization constructs. This thesis discusses subtle interactions between function

shipping and point-to-point synchronization and finish constructs in Section 4.2.1.

2.2 Global termination detection

Shipping a function for asynchronous execution without knowing when it is completed

is useless. Synchronization constructs that ensure completion of these asynchronous

tasks are needed. Cilk uses a sync statement to ensure completion of all previously

spawned tasks. Each function that contains spawn calls in Cilk also has an implicit

sync statement at the end. The implicit sync restricts Cilk’s computation model to

be a fully-strict model, where a parent task must wait for its children to complete

before it ends. Our finish construct is inspired by X10’s synchronization construct

with the same name. The finish construct in X10 relaxes this model by allowing

parent tasks to exit without waiting for the completion of their children, which de-

fines the terminally-strict computation model [28]. Our work on finish in CAF 2.0

follows the terminally-strict computation model since it can express a broader range

of algorithms.

Detecting termination of nested asynchronous tasks on a shared memory system

is a trivial problem. Cilk uses a simple algorithm in which each parent task records

the number of active children tasks and exits when the counter is decremented to

zero. This su�ces to ensure completion of spawned functions in its fully-strict model.

The fact that a shipped function in CAF 2.0 can ship more functions complicates

the problem of detecting completion of all these nested shipped functions. Distributed

termination detection algorithms are required to determine termination reliably and

e�ciently in a distributed system. The distributed termination problem has been
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extensively studied [29, 30, 31, 32]. The algorithms in this area can be broadly

classified as symmetric and asymmetric algorithms. In the symmetric algorithms all

processes execute identical code and detect termination together. The asymmetric

algorithms rely on a pre-designated process for termination detection.

The implementation of X10 for scalable parallel systems uses a vector counting

algorithm to detect global termination [33]. Each worker maintains a vector that

contains a count per place, tracking the number of activities it spawned remotely and

completed locally. Once a worker has quiesced (no active tasks in this place), it sends

its vector to the place that owns the finish. Global termination is detected once

the place that owns the finish receives vectors from everyone and the sum-reduced

vector is zero. This algorithm su↵ers from the fact that a single place is responsible

to receive p vectors of size p, where p denotes the number of places. This will become

a bottleneck when scaling to a large number of places.

Scioto [34], a framework that provides dynamic load balancing on distributed

memory machines, implemented a wave-based algorithm similar to that proposed by

Francez and Rodeh [35] to detect global termination. Their termination detection

algorithm, a token wave broadcasts up and down a binary spanning tree mapped

onto the process space. Each process owns a token, which is initially white. In the

up-wave of termination detection, a black token is generated when one has performed

a load balancing operation since the last down-wave. A black token is passed to a

node’s parent in the tree to signal a new round of down-and-up waves.

Because both X10 and Scioto are global-view programming models, the algo-

rithms they used for termination detection are asymmetric. All dynamic tasks in

X10 and Scioto share the same ancestor, which is a natural place to oversee termi-

nation detection. Since CAF 2.0 follows the SPMD model, where computation starts
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simultaneously from multiple places, these algorithms are not suitable for use by the

finish construct in CAF 2.0.

AM++ employs an algorithm that uses four counters [36, §4] and non-blocking

global sum reductions to accumulate the counts to determine global termination [22].

The four-counter algorithm twice counts the messages sent and received by each pro-

cess. Equality of these four counters guarantees correct detection of termination by

the system. Because this algorithm counts twice, it always incurs an extra global

reduction to detect termination; our algorithm does not pay this extra cost. More-

over, in the implementation of termination detection in AM++, if a user specifies

the longest length of the chain of messages will be used, they report that a known

chain length allows a simpler algorithm with lower message complexity to be used for

termination detection. Our algorithm does not require the knowledge of the length of

the chain of shipped functions, but still keeps a tight bound on message complexity.

Details of our algorithm are described in Section 4.2.3.
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Chapter 3

Background

3.1 Coarray Fortran

In 1998, Numrich and Reid proposed a small set of extensions to Fortran 95 to

support parallel programming that they dubbed Coarray Fortran (CAF) [4]. Their

major extension to Fortran was coarrays which users use to declare and access shared

data. For example, the declaration

integer :: A(N,M)[*]

declares a shared coarray A with N ⇥M integers local to each image. Dimensions in

the bracketed tuple are called codimensions. Using coarrays, one can directly access

data associated with another image by adding a bracketed tuple to a coarray variable

reference. For example, the statement

A(:,N)[q] = A(:,1)[p]

reads the first column of data in coarray A on image p then uses it to update the last

column of A on image q.

3.2 Coarray Fortran 2.0

In 2005, the Fortran Standards committee began exploring the addition of coarray

constructs to a new version of Fortran that would later become Fortran 2008. The de-

sign for coarrays in Fortran 2008 closely follows Numrich and Reid’s original vision of
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Coarray Fortran, however, is flawed in several respects. Among its flaws, it lacks sup-

port for image subsets and is unable to express that the latency for accessing remote

data should be overlapped with computation. A detailed critique of the proposed

coarray extensions for Fortran 2008 can be found in a paper by Mellor-Crummey et

al. [37].

Our group has been working on a set of extensions to Fortran that we call Coar-

ray Fortran 2.0 (CAF 2.0). CAF 2.0 adds a richer set of extensions to Fortran to

enable users to express a wider spectrum of parallel algorithms in a more e�cient

and scalable way. CAF 2.0 features include but are not limited to teams, events,

asynchronous copy, asynchronous collectives, copointers, and topologies. In the fol-

lowing subsections, we briefly summarize some key features of Coarray Fortran 2.0,

for their knowledge is essential in discussing the new constructs studied in this thesis.

A more detailed description of Coarray Fortran 2.0 language is presented in earlier

work [9, 38, 39].

3.2.1 Teams

A team is a first-class entity that represents a process subset in CAF 2.0. The

existence of teams in CAF 2.0 has three purposes. First, this set of images serves

as a domain onto which coarrays may be allocated. Second, it provides a namespace

within which process images can be indexed by their relative rank within that team,

instead of an absolute image ID. Third, a team provides an isolated domain on which

a subset of process images to communicate and synchronize collectively.

Initially, CAF 2.0 programs begin with a global team named team world to which

every image belongs. New teams are created by calling team split on an existing

team. All images that supply the same color to a team split become members of
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1 team :: rowteam , colteam
2 integer :: myrow , mycol , me , nprow
3 double precision , allocatable :: A(:)[*]
4

5 mycol = team_rank () / nprow
6 myrow = team_rank () - mycol * nprow
7

8 call team_split(team_world , mycol , myrow , colteam , mycol)
9

10 with team colteam
11 allocate(A(10)[])
12 end with team

Figure 3.1 : team split and coarray allocation within a team

the same new team after the operation completes. Figure 3.1 shows an example of

creating a new team with team split and using the team to control allocation of

coarray A. CAF 2.0 also introduces the concept of a default team, which is specified

using a with team block (line 10–12). The default team is implicitly used any time

a team is required but not specified. Note that with team blocks are dynamically

scoped and may be nested. For example, the team size function (line 5–6) inspects

the number of process images in the default team, which is team world since no with

team block is created yet; however, the allocation of coarray A (line 11) is performed

by images of the column sub-team (colteam).

3.2.2 Events

Events in CAF 2.0 serve as a mechanism to support point-to-point synchronization.

Figure 3.2 lists the APIs for manipulating events in CAF 2.0. Event objects can be

viewed as counting semaphores. An event must be initialized before use by invoking

event init. A event notify operation increases an event’s count by one, or if the
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event_init(event e)
event_notify(event e[,integer n])
event_wait(event e[,integer n])
event_trywait(event e,[ integer n,] logical success)

Figure 3.2 : Examples of event operations in CAF 2.0

optional argument n is specified, by n. An event wait operation blocks the execution

of the current thread until the event has been notified once or the specified number of

times. CAF 2.0 also includes a non-blocking event trywait operation that attempts

to consume an event’s counter by one or n if specified, and report whether it succeeded

or not with the logical variable success. The optional argument n enhances the

usability of events in cases such as stencil calculation, where a process might use the

same event to wait on all of its north, south, east and west neighbors to update their

values before local computation can proceed. In this case, specifying 4 for n simplifies

programming.

In CAF 2.0, there are two ways that an event can be posted: 1) it can be notified

explicitly through event notify; 2) also, it can be attached to an asynchronous

operation so that it is notified when the operation completes. The following sections

describe the use of events with asynchronous operations.

3.2.3 Predicated asynchronous copy

There are three categories of asynchronous operations in CAF 2.0: asynchronous

copy, asynchronous collectives, and shipped functions [38]. A predicated asynchronous

copy provides a flexible mechanism to copy data from one process image to another

asynchronously. The copy async, as shown below,

copy_async(destA[p1], srcA[p2], pre_event, src_event, dest_event)
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broadcast* gather scatter reduce
scan shift sort permute
alltoall allreduce allgather barrier*

* Asynchronous versions of these collectives are implemented at the time
of this writing

Table 3.1 : Collective operations in CAF 2.0

copies srcA on process image p2 to destA on image p1. The copy will be initiated

after pre event is posted. It could be used by the sender to indicate the source

data is ready to be copy, or used by the receiver to trigger the copy operation when

the receiver is ready to receive the data. Notification of src event indicates that

the srcA is free to be modified, and notification of dest event indicates that the

copy operation is complete on the destination process p1. Note that CAF 2.0 uses

two separate events to distinguish two stages of completion of an asynchronous copy

operation. This yields opportunity for user to overwrite the source data at the possible

earliest time so that a subsequent copy async operation can be initiated without

waiting for destination completion.

3.2.4 Asynchronous collectives

The fact that most high performance computing applications are written using MPI

for collective operation proves that collectives are e↵ective for expressing scalable

algorithms. As does MPI, CAF 2.0 includes many collective operations; they are

shown in Figure 3.1. A process image that participates a synchronous collective op-

eration waits for two reasons: communication latency and asynchrony among images.

CAF 2.0 provides asynchronous versions of these collectives, which enable users to

overlap waiting that occurs in collective operations with local computation.
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We describe the semantics of an asynchronous barrier operation, also known as a

split-phase barrier, as an example to show the usefulness of asynchronous collectives.

Upon reaching a synchronization point, each image initiates an asynchronous barrier

and proceeds with local computation that can be done before everyone else arrives.

Later, it can require the completion of the barrier by using either an event wait

or a finish block. Asynchronous barriers enables the cost of synchronization to be

overlapped with local computation.
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Chapter 4

Approach

On today’s large-scale supercomputers, the latency of accessing data on a remote

node is often thousands times more than that from local memory. To achieve high

performance on these systems, it is critical to hide communication latency by over-

lapping it with local computation. One obvious way of hiding latency is to continue

local computation while data is transferring and synchronization is in flight. Under

many circumstances, determining whether a PUT or GET operation can be transformed

into its non-blocking form is hard for a compiler. In particular, this optimization op-

portunity is di�cult to exploit when code is compiled separately. Since a programmer

knows what computation can be safely overlapped with computation, CAF 2.0 pro-

vides asynchronous copy and asynchronous collective constructs for programmers to

express such asynchronous communication.

Function shipping is another primitive that we integrate into CAF 2.0 to deal

with communication latency on large-scale machines. It provides users the ability

to co-locate computation with data. This ability is essential in avoiding unnecessary

communication in certain circumstances. As we discussed in Section 5.2.2, in studies

with the HPC Challenge RandomAccess benchmark, shipping element updates of a

remote location saves one round trip compared with the method of reading an element

remotely, updating it, and writing it back. Moreover, function shipping enables users

to reduce synchronization points in a program. In the RandomAccess benchmark

example, without function shipping the thread updating a table entry on a remote
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1 event :: ev
2 ...
3 spawn(ev) foo(table(i,j)[p], n)[p]
4 call event_wait(ev)
5

6 finish (a_team)
7 spawn foo(table(i,j)[p], n)[p]
8 ...
9 end finish

Figure 4.1 : Explicit and implicit model examples of CAF 2.0 function shipping

thread needs to wait until the entry arrives. But using a shipped function to update a

remote table entry does not require synchronization on both remote and local threads.

We present our design and implementation of function shipping in CAF 2.0 in detail

in Section 4.1.

To support the integration of function shipping into CAF 2.0, we also designed a

synchronization construct finish that e�ciently detects global completion of a set

of shipped function instances spawned within the finish block. Section 4.2 discusses

our algorithm implementing the finish construct, and proves that its communication

complexity is bounded by the depth of the longest chain of shipped functions.

4.1 Function shipping

4.1.1 Syntax

As shown in Figure 4.1, replacing the Fortran keyword call with spawn executes a

procedure call (line 3) in CAF 2.0 on a remote image asynchronously. The destination

image is specified within the ending square bracket pair. A spawn immediately returns

after the shipped function leaves the source bu↵er and the source data can be modified.
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Dummy argument declaration Meaning of di↵erent references
for an coarray argument of the coarray in a shipped function
integer :: A A: a copy of A on sender
integer :: A[*] A: coarray A on receiver

A[x]: coarray A on image x

Table 4.1 : Meaning of coarray references within a shipped function.

Like other asynchronous operations in CAF 2.0, a programmer can synchronize a

shipped function by binding the shipped function with an event object. The event

appearing between a pair of parentheses after the keyword spawn (line 2) will be

notified when the shipped function completes. Instead of tracking shipped functions

one by one with events, users can also use the finish construct to manage completion

of spawned functions e�ciently when they do not need to know when each individual

function completes (line 6). A detailed description of using the explicit and implicit

models of completion in CAF 2.0 is in Section 4.2.1.

4.1.2 Semantics

Arguments to a shipped function

Arguments passed into a shipped function are treated di↵erently from arguments

to normal functions. Coarray arguments are handled according to the dummy ar-

gument declaration within that function. Within a shipped function, the meaning

of a reference depends upon the combination of the actual argument passed to the

shipped function and its dummy declaration with the function. Table 4.1 shows that

coarray arguments declared as non-coarray variables in dummy arguments are deref-

erenced at the call site. Non-coarray dummy arguments are copied to the remote

image along with the shipped function; they act as if they were implicitly marked
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with VALUE attributes: modifications on them will not be reflected back to the calling

image. Support for intent attributes such as IN, OUT, INOUT is not implemented at

the time this thesis is written. However, support for intent attributes in CAF 2.0 are

desirable to make the semantic of shipped functions compliant with Fortran calling

conventions; it will be included as part of our future work. Table 4.1 also shows that

a coarray dummy argument gives the function the ability to access portions of the

coarray on any image. The meaning of a reference to a coarray dummy argument

within a shipped function is the same as that of a coarray reference outside a shipped

function in CAF 2.0.

Execution context

Shipped functions are usually executed on a di↵erent image from the one that spawned

them. Thus, the context in which shipped functions execute is the one on the image

that is the target of the spawn. Therefore, they can access global data local to the

target image, even if the global data is not shared across images. We believe the

change of execution context is necessary in making function shipping fully expressive.

Manipulating many distributed data structures such as distributed hash tables, lists

and graphs requires shipped functions to have the ability to operate on global data

on the target image.

4.1.3 Implementation

This section presents the implementation details of function shipping in CAF 2.0.

Since the runtime system of CAF 2.0 uses GASNet [10] as a communication layer,

function shipping in CAF 2.0 is implemented on top of Active Messages of GASNet.

We start this section with a brief introduction of the asynchronous engine we build into
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1 typedef struct async_record_s {
2 async_status_t status;
3 caf_team_t team;
4 size_t async_id;
5 async_progress_fxn *progress_fxn;
6 size_t finish_handle;
7 struct async_record_s *next;
8 long async_state_data [0];
9 } async_record_t;

Figure 4.2 : async record t structure used in the asynchronous engine of CAF 2.0
runtime system.

CAF 2.0’s runtime system, which is used for execution of asynchronous operations.

Asynchronous engine

The asynchronous progress engine is a key piece of machinery in CAF 2.0. It im-

plements cooperative multithreading and message-based parallelism in support of

asynchrony. The implementation of the progress engine is fairly straightforward. We

maintain a linked list of the asynchronous operations that are currently pending.

Associated with each operation is a async record t structure which has three ma-

jor fields: status, progress fxn, finish handle and async state data, as shown

in Figure 4.2. In it, status is an indicator of the current state of the opera-

tion, and may be any of the values of ASYNC UNINITIALIZED, ASYNC INPROGRESS,

or ASYNC COMPLETE. The progress fxn field is a progress function, invoked on behalf

of the operation whenever the progress engine is active. The async state data is

a placeholder for operation-specific data. Finally, finish handle records the finish

block that spawned the operation so that upon completion of an asynchronous opera-

tion, we are able to report it back to its corresponding finish scope. For asynchronous
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atomic add atomic sub atomic or atomic and atomic xor
atomic fadd* atomic fsub* atomic for* atomic fand* atomic fxor*

* These atomic operations will first perform the update then fetch the old value
back.

Table 4.2 : Remote atomic operations in CAF 2.0.

operations that carry explicit event objects, the finish handle field is assigned an

invalid value.

Function shipping in CAF 2.0 makes use of the asynchronous progress engine to

execute and save a shipped function on remote image. When a shipped function

cannot be executed inside an active message handler, it will be converted into an

async record t struct, then be added to the asynchronous operations list on the

target image for later execution when the asynchronous engine is invoked.

Argument marshaling

The compiler generates a structure for each spawn call to hold the arguments passed

to that call. The compiler also generates a pair of functions to marshal and de-marshal

arguments to a shipped function. For scalar variables or normal Fortran arrays, data

is serialized and packed into a bu↵er which sent along with an active message. For

coarray arguments, we create a reference type for it which encapsulates coarray’s

handle, upper bound, lower bound and stride of each dimension together to support

reconstruction of the reference on the remote process. To improve performance of

function shipping, where possible, we have integrated into CAF 2.0 support for sev-

eral remote atomic operations. Table 4.1.3 lists remote atomic operations currently

supported in CAF 2.0. Atomic operations in CAF 2.0 are optimized to avoid the

overhead of marshaling and de-marshaling. They also avoid the overhead of invoking
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asynchronous progress engine because they will be executed directly within active

message handlers.

Optimistic execution

As a optimization, we adopt the idea of Optimistic Active Messages [23]. When a

shipped function arrives, the image first optimistically assumes that the function is

lightweight and non-blocking, and executes it directly within an active message han-

dler. If the assumption is wrong — the function does not complete within a short

period of time, or attempts to invoke a blocking subroutine, its execution state will

be saved into an async record t for later execution. Optimistic execution of shipped

functions avoids the overhead of asynchronous engine for lightweight shipped func-

tions. The technique we used to generate continuations for shipped functions mimics

Cilk’s compilation strategy of spawn functions [25]. In particular, the CAF 2.0 com-

piler generates a continuable copy of the procedure which accepts a frame argument.

The frame structure contains a entry point field and the procedure’s local variables.

A function’s frame is created and initialized when the optimistic assumption fails. For

functions that cannot be executed within the active message handler, its continuable

copy is used as the progress function in the asynchronous engine instead.

4.1.4 Deadlock-free execution

Compared with Active Messages [11], function shipping in CAF 2.0 gains its advan-

tage in its ability to communicate with remote images and make blocking calls. In

shared memory programming languages such as Cilk [25], a spawned thread gains it

power in expressiveness by having the same capability with regard to accessing shared

memory, spawn new threads, and communicate with other threads. In CAF 2.0,
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1 program
2 . . .
3 ca l l t eam bar r i e r ( )
4 i f (my rank == p) spawn f oo ( . . . ) [ q ]
5 i f (my rank == q) then
6 . . .
7 ca l l e v en t no t i f y ( e )
8 end i f
9 . . .

10 contains
11 subroutine f oo ( . . . )
12 ca l l event wa i t ( e )
13 . . .
14 end subroutine
15 end program

Figure 4.3 : Example of deadlock caused by blocking shipped function.

shipped functions can perform a full range of operations such as accessing coarray

located remotely and spawning more functions to other processes.

However, allowing spawned functions to block, can cause deadlock in certain cir-

cumstances even when the program is semantically correct. Figure 4.3 shows an

example of this case. In CAF 2.0, shipped functions are executed when the local

process makes blocking calls to operations such as barrier, event wait, etc.. In this

example, if the spawned function from image p is received by image q before q exits

from the barrier, the spawned function foo will be executed and q will block, waiting

for event e. Since event e can only be notified by q and that has not yet happened.

This causes a deadlock.

To avoid deadlock caused by executing blocking calls within a shipped function,

for each shipped function that might block, the CAF 2.0 translator generates a con-

tinuable copy of the procedure for it. A continuable copy converts every blocking
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operation in the procedure into its corresponding non-blocking version. The continu-

able copy stores local variables on the heap and records the program counter before

entering a non-blocking call, then makes the non-blocking call and saves itself in the

pending operations list of the asynchronous engine. Later, when the asynchronous

engine is invoked, it resumes the procedure if the non-blocking call has completed.

The continuable copy of a procedure removes itself from the execution stack and

schedules itself for resumption later when a blocking call is undergoing; thus avoids

blocking the current thread. By providing continuation, we are able to overlap the

communication cost incurred by shipped functions with local computation, yet also

ensure that the execution of shipped functions is dead-lock free.

4.2 Finish

Adding function shipping into an SPMD language such as CAF 2.0 enriches the set of

algorithms that can be expressed e�ciently in SPMD fashion. However it also raised

new challenges in synchronizing these asynchronous operations e�ciently. Similar

synchronization problems exist in other programming languages that support spawn-

ing asynchronous activities. Cilk provides the sync statement to await termination

of all previously spawned threads. Since it executes on a shared memory machine, a

simple algorithm to keep track of active child threads su�ces. In X10, global com-

pletion of activities spawned by async statements are managed by a finish block.

Although X10 supports a distributed memory model through the concept of place [40],

a simple algorithm to determine global termination is still possible. Because in X10

all asynchronous activities from a finish block originate from the same place that

spawns the finish, their global completion can be monitored by the image owning

the finish.
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In CAF 2.0, functions are spawned from arbitrary processes within a team, and

thus no single process has the complete knowledge of the global state. This leads to

two problems: 1) after each process has finished its local work, it cannot determine by

itself whether there will be incoming work from other processes in the same team; 2)

similarly, an image can’t determine whether a remote image has quiesced because of

the reason stated in 1). To solve these two problems, we propose a global termination

algorithm which detects global completion in collectively in O((L + 1) log(p)) time;

where p denotes the number of images in the team, and L denotes the length of the

longest chain of spawns that occurs in the dynamic instance of finish scope.

In this section, we first introduce the semantics of CAF 2.0’s finish construct.

Then we discuss the computation model of CAF 2.0, and compared it with Cilk’s fully-

strict model and X10’s terminally-strict model. After that, we present the algorithm

for detecting global completion used by finish, and describe implementation details

of the algorithm. Finally, we prove this algorithm correctly detects termination and

establish this algorithm’s theoretical upper bound with respect to communication.

4.2.1 Semantics

Finish construct is present in CAF 2.0 as a finish block, marked by finish and end

finish statements, as shown in Figure 4.4. finish blocks are associated with teams;

they work as collective operations. Every image within the associated team needs

to create a finish block that matches those of its teammates. finish blocks can be

nested and the team associated with the nested block can be a di↵erent team of its

parent finish block. This can be useful for computation on a large multi-dimensional

matrix distributed across a 2D processor grid. A structure of a finish block on row-

wise team (line 5) nested within another finish scope on column-wise team (line 3)



29

1 copy_async(A(:), B(:)[p])
2 ...
3 finish (col_team)
4 spawn foo (...)[p]
5 ...
6 finish (row_team)
7 ...
8 copy_async(C(:), D(:)[q], ev)
9 ...

10 end finish
11 end finish
12 ...
13 call event_wait(ev)

Figure 4.4 : Example of nested finish scopes and interaction with event objects.

allows the operations on line 4–5 to be overlapped with the computation on line 7–9.

when using finish to control the completion of asynchronous collective operations,

the team associated with an asynchronous collective operation has to be a subset of

the team of enclosing finish block to help correctly determine the completion of

these asynchronous collectives.

Models of completion

CAF 2.0 provides two models of asynchrony to control an asynchronous operation:

the explicit and implicit models. In the explicit model, programers use event objects

associated with asynchronous operations to monitor when an certain type of comple-

tion occurs or to trigger an pending operation. For example, a copy async statement

in CAF 2.0 has three optional event arguments: an event indicating the operation

may proceed, an event indicating that the source may be overwritten, and an event

indicating global completion. This enables an expert user to write an event-driven

processing loop that cooperates with other images by triggering asynchronous oper-
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ations and reacting to specific events. The explicit model gives user full control over

asynchronous operations in CAF 2.0.

An alternative way of controlling asynchronous operations is by using an implicit

model for completion. A user can simplify programming using finish blocks to

synchronize all asynchronous operations spawned within. All asynchronous operations

within a finish block are guaranteed to be complete before the program exits from

the finish block. However, we note that users are allowed to mingle the two models of

asynchrony together by ensuring the completion of all activities using a finish block

and, at the same time, precisely controlling the completion of some asynchronous

operations using event.

Asynchronous operations that occur outside all explicit finish blocks and have no

events bound with them (line 1) will all be captured before program exits, because

the runtime system encloses the entire program execution inside an implicit global

finish block on team team world.

4.2.2 CAF 2.0 computation model

Blumofe et al. [41] defined the computation model generated by Cilk named fully-

strict computation. A fully-strict computation is a multithreaded computation in

which a parent task must wait for the completion of its children tasks before it exits.

Agarwal et al. [42] extended the fully-strict model in X10. A finish block in X10

creates a dynamic scope in which users may spawn activities using the async primi-

tive. Asynchronous activities spawned from a finish block must complete before the

program exits from the finish block, but a descendant activity is allowed to continue

executing even if its parent activity has terminated. This computation model in X10

is known as the terminally-strict model. Both fully-strict and terminally-strict com-
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subroutine foo1()
...
spawn foo2 ()[ mod(team_rank () + 2, team_size ())]
call work() ! a call that can block

end subroutine foo1
subroutine foo2()

...
call work() ! a call that can block

end subroutine
...
finish

...
spawn foo1 ()[ mod(team_rank () + 1, team_size ())]
call work() ! a call that can block

end finish

Figure 4.5 : An example of CAF 2.0 code fragment.

putations are multithreaded computation, where their task spawn trees have single

roots, thus their computations can be represented as a directed acyclic graph.

The finish construct in CAF 2.0 di↵ers from the construct with the same name

in X10. Each finish block in CAF 2.0 is associated with a team; a finish works as

a collective operation. Shipped functions from the same finish block may originate

from multiple process images. We depict this computation model as a space-time

diagram. In a space-time diagram, each horizontal line corresponds to a process image

of a CAF 2.0 program. Activities in CAF 2.0 are represented as dots in the space-time

diagram. The order that dots appear on a horizontal line from left to right reflects

the order that these activities happen in real time in the process image. Figure 4.6

shows an space-time diagram for a finish computation in CAF 2.0; Figure 4.5 lists

its corresponding code. Activities belong to the same shipped function or are local

to a finish block are tagged with di↵erent labels to distinguish them from each
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P0

P1

P2

P3

a: local c: foo2

aa bbb c c c

aa bb

aa

b

bb b

c c c

aa

c c c

bb bc c c

b: foo1

Figure 4.6 : CAF 2.0 computation diagram example.

other. In the finish computation model of CAF 2.0, three kinds of activities are of

particular interest to us: the first operation in a shipped function that we call start

operation, spawn operations that spawn new functions, and completion of a local

computation or a shipped function. A start operation, represented as a hollow dot in

a space-time diagram, marks the time a shipped function is received; the completion

of a local operation or a spawned function is represented as a solid dot. A spawn

operation is represented as a grey dot ; the edge from a grey dot on one horizontal line

to a hollow dot on another horizontal line is called a spawn edge. For convenience, in

Figure 4.6 we omitted dots that represent activities other than the start, spawn, and

completion in computation local to a finish block or shipped functions. The triangle

and rectangle on each line of a space-time diagram respectively mark the start and end

of a finish block in CAF 2.0. Because a program must wait for all shipped functions

within a finish block to complete before it exits from the block, a rectangle must

appear on each horizontal line after all shipped functions spawned after the proceeding

triangle. Activities from di↵erent shipped functions or local computation are marked
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with di↵erent labels. Note that because shipped functions in CAF 2.0 obey the run-

until-block semantics — a shipped function’s execution will not be interrupted until

it performs a blocking operation; another shipped function may start execution when

a shipped function is blocked. Operations of a shipped functions may be interleaved

or nested within operations of another shipped function in a space-time diagram. For

example, in the space-time diagram in Figure 4.6, calls to subroutine work, which

is an subroutine that might block, cause the execution of function foo1 interleaved

with function foo2 on process P1, and the local computation on P3 be nested within

the shipped function foo1. To simplify writing, we use the term messages to refer to

shipped functions in a finish computation in later sections of this chapter.

4.2.3 Algorithm for termination detection

A vast number of distributed termination [29] algorithms have been proposed. How-

ever, many any of them su↵er from two shortcomings which make them undesirable

for large-scale parallel machines. Some algorithms make assumptions about their

underlying system or communication layer such as a consistent global time across

the system [36, §6.1], a synchronous communication model [30], or message channels

that obey the First-In-First-Out (FIFO) rule [32], etc. These requirements are often

costly to achieve on scalable parallel architectures. Also, many algorithms require

storage that grows at least linearly with the number of processes [31][36, §6.2, §7].

Considering the fact that today’s large-scale machines have tens of thousands of cores

these algorithms will have a large memory footprint.

Hence, we develop a new termination detection algorithm that fits the architecture

of today’s large-scale parallel systems. Our algorithm is based on a simple but incor-

rect algorithm described in Mattern’s paper [36]. In Mattern’s algorithm, each process
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has a two-component vector to count the number of sent and received messages. It

detects termination repeatedly by performing sum-reductions on the di↵erence of the

two components of the vectors on each process in a component-wise manner. Global

termination is reached when the result of a sum-reduction is zero. This simple al-

gorithm exhibits a good property: it uses only a small, constant space—an integer

vector of size two—on each process.

Although Mattern’s algorithm is space-e�cient, it is flawed in two respects: cor-

rectness and time-e�ciency. The algorithm is incorrect as mentioned by Mattern

himself in his paper [36], because the vectors collected from each process could be

an inconsistent time cut of the system. An inconsistent time cut could cause the

vectors collected from each process to sum-reduce to zero even when there are still

ongoing computations. In this case the algorithm falsely detects termination. This

inconsistent time cut problem is discussed in detail in a later section.

With respect to time e�ciency, this algorithm may perform poorly in practice

because it does not specify when to retry the detection after receiving a non-zero

value from a sum-reduction. If a new round of detection is initiated immediately

every time after the last round of detection fails, it may use a potentially unbounded

number of rounds before reaching termination. If a process waits too long before

starting a new round of termination detection, it may cause unnecessary waiting

when a termination state is reached.

Figure 4.7 lists the termination algorithm used in the finish construct in CAF 2.0.

We fixed the inconsistent time cut problem by using epochs to manage updates to the

counters (line 12 and 14) in our algorithm. And we enforced a condition that has to

be satisfied before initiating a new round of termination detection: an image needs

to wait until all shipped functions it spawns are received and all shipped functions
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1 struct epoch {
2 int sent , delivered , received , completed;
3 }
4

5 epoch e, e1; // global var; even and odd epoch counters
6

7 function detect_termination (epoch e, team t)
8 {
9 while (work_left) {

10 blockuntil(e.sent == e.delivered
11 && e.completed == e.received );
12 if (not_odd(PRESENT_EPOCH )) e1 = next_epoch(e);
13 allreduce(sum , e.sent -e.completed , work_left , t);
14 e = next_epoch(e1);
15 }
16 }

Figure 4.7 : The termination detection algorithm in finish.

it received must be completed before the image performs a new sum-reduction (line

13). This prerequisite condition, as proven in Section 4.2.4, reduces the number of

rounds of detection performed, and detects termination at the earliest possible time.

In our algorithm, an epoch structure contains four integers that counts the number of

functions an image has sent, completed, and received locally as well as the number of

functions it has delivered remotely. The allreduce operation is a collective all-to-all

sum-reduction. Each image waits at an allreduce until all images in team t have

arrived at the same allreduce.

Dealing with inconsistent time cuts

In a space-time diagram described in Section 4.2.2, a time cut is defined as a curve that

crosses each horizontal line exactly once. A time cut is considered to be inconsistent,

if after the cut an image spawns a message that “travels back in logical time” and
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P1
P2
P3
P4

a

b

m

Figure 4.8 : An example of inconsistent time cut.

lands before the cut. Figure 4.8 shows an example of inconsistent time cut. The

message m travels from a time after cut ab and lands before the cut, thus cut ab is an

inconsistent time cut. When collecting counters from each image in a team using the

allreduce operation in our algorithm, the time at which each image provides its local

counters to the allreduce can be connected with a curve that crosses each horizontal

line to form a time cut across the team. Consider the example depicted in Figure 4.8,

a shipped function is received by image P1 after P1 has contributed his counters

to his communication partners in an allreduce then spawns two more functions.

One of the children “travels back in time” and lands on P4 before P4 participates

the allreduce. The counter values collected by this allreduce on P1, P2, P3, P4

are (0, 0), (0, 0), (1, 0), (0, 1), respectively. Although the result of sum-reduction over

these counters is zero, the system has not terminated yet.

We tackle the inconsistent time cut problem by introducing the notion of epochs.

We divide interval in time between when a finish scope starts and the time when

the finish computation ends into a series of epochs. These epochs are numbered one

after another starting from zero; we call them even and odd epochs based on whether
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its sequence number is even or odd. Thus, each round of reduction consists of two

epochs: an even epoch and an old epoch. An image proceeds from an even epoch

into an odd epoch when 1) it enters an allreduce, or 2) when it receives a message

from an image in an odd epoch. An image proceeds from an odd epoch into the next

epoch when it exits an allreduce.

Each epoch contains a set of counters, as listed in Figure 4.7. A finish scope

counts the number of functions it shipped, delivered, received, and completed locally

using the set of counters in the epoch the image presents. For example, if a shipped

function is received in epoch n and is completed in epoch n+1, the counter received

in epoch n notes the shipped function’s reception and the counter completed in epoch

n+1 notes the completion of the shipped function. In the beginning, all the counters

in epoch 0 are initialized to zero. Then the counters in a new epoch are initialized to

the value of corresponding counters from the last epoch.

When an image participates an allreduce it always provides to the allreduce

the counters from the even epoch; counters in odd epochs are used to track functions

sent, received, delivered, and completed during an allreduce. Because a message

sent from an odd epoch will cause the receiver image to proceed into the odd epoch,

the sending, reception, delivery and completion of a shipped function are all counted

by counters in the odd epoch. Therefore, functions shipped during a reduction are

not counted in that allreduce; they will be included in the next round of reduction.

This property ensures the time cut constructed using an allreduce is consistent and

guarantees our algorithm is correct, as proven in Section 4.2.4.

Because an image can only present in one epoch at any time and only counters

from the previous epoch are needed to initialize counters in the present epoch, we

need only two sets of counters for each finish scope on each image. Using epochs to
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1 struct finish_scope_t {
2 finish_handle_t handle;
3 epoch_t epoch [2]; //even and odd epoch

4 team_t team;
5 }

Figure 4.9 : finish scope t structure used in the finish construct.

manage counters in our algorithm enables us to maintain a constant space requirement

on each image for each finish scope.

Managing finish scopes

Figure 4.9 shows the finish scope t structure used by the finish construct. Each

finish block in CAF 2.0 is represented as an instance of finish scope t at runtime.

Finish scopes are dynamically created at the time a CAF 2.0 program enters a finish

block, and destroyed when program exits from the block. Finish scopes are managed

using a splay tree data structure [43]. A splay tree is a self-adjusting binary search

tree which exploits data access locality that enables recently accessed elements to

be accessed again cheaply. Each time a node n in a splay tree is accessed, a splay

operation rearranges the tree so that node n is placed at the root of the tree. The

splay operation is performed every time a node is accessed, causing nodes that are

frequently accessed move nearer to the root. Splay trees performs insertion, look-

up and removal operations in O(log n) amortized time. Because most frequently an

image accesses and operates on the innermost finish scope, using a splay tree to

manage finish scopes minimizes the cost of accessing the innermost finish scope, yet

it also enables accessing random finish scopes e�ciently as well.
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4.2.4 Proof of termination and communication bound

In this section, we prove our algorithm correctly detects termination of a distributed

computation defined by a finish block. Then, we establish a theoretical upper bound

for our algorithm with respect to the communication time for termination detection.

Proof of termination

We define that the computation of a finish scope terminates at time t when all

messages spawned before t have completed by t and computation local to the finish

block has completed. Let m denote a message in a CAF 2.0 program and M be the

set of all messages. We define sets

M
s

(i) = {m : m is spawned by image i} and

M
c

(i) = {m : m is completed by image i} .

Each message in a CAF 2.0 program that uses the implicit model for completion is

tagged with a handle of its enclosing finish block; each finish scope uses a di↵erent

handle to tag its messages. If F is the computation belongs to a finish block, M |F

denotes the projection of set M on finish block F . Because our algorithm detects

termination of computation in a finish block, though multiple nested instances of

finish can be alive simultaneously, our discussion focuses only on detecting termina-

tion of messages that originate from one finish block. For this reason, we omit the

“|F” notation for all definitions and references describing a set of messages in later

section for simplicity.

Let T
s

(m) denotes the time when message m is spawned, and T
c

(m) the time m

is completed. In our algorithm each round of termination detection uses two epochs:
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an even epoch and an odd epoch. In a system with n images, we denote as t(i) the

time when image i, i 2 {1, 2, ...n}, transits from the even epoch to the odd epoch.

We define

S
i

= {m 2 M
s

(i) : T
s

(m) < t(i), i = 1...n} ,

C
i

= {m 2 M
c

(i) : T
c

(m) < t(i), i = 1...n} , and

O
i

= {m 2 S
i

: T
s

(m) > t(i), i = 1...n}

Then, we define

S̄ =
n[

i=1

S
i

and C̄ =
n[

i=1

C
i

.

Finally, define

S(t) = {m : T
s

(m) < t} , and

C(t) = {m : T
c

(m) < t} .

In the following proof, we prove that when the epoch technique described in last

section is applied, if a global sum-reduction over the di↵erence of the count of messages

spawned and the count of messages completed returns zero, that is
P

n

i=1(|Si

|�|C
i

|) =

0, the computation in a finish block has completed before the global reduction

completes.

Lemma 4.1. If m 2 O
i

and m 2 M
c

(j), t(j) < T
c

(m).

Proof. Follows from the property of epochs : a message spawned from an odd epoch

will cause its target image to enter an odd epoch when it is received.

Lemma 4.2. If
��S̄
�� =

��C̄
��, then S̄ = C̄.
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Proof. We prove by contradiction.

If
��S̄
�� =

��C̄
��
^ S̄ 6= C̄, 9m, s.t. m 2 C̄ and m 62 S̄.

Let p be the image that completes m, so m 2 C
p

, and

T
c

(m) < t(p). (4.1)

Let q be the image that spawns m, so m 2 M
s

(q).

Because m 62 S̄, then T
s

(m) > t(q), so m 2 O
q

.

From Lemma 4.1, we have T
c

(m) > t(p), which contradicts (4.1).

Lemma 4.3. If S̄ = C̄, S(t
end

) = C(t
end

), where t
end

= max(t
i

), i = 1...n.

Proof. We prove S(t
end

) = C(t
end

) by showing that S̄ = S(t
end

) and C̄ = C(t
end

).

We prove S̄ = S(t
end

) by contradiction.

Assume S̄ = C̄ ^ S̄ 6= S(t
end

), 9m, s.t. m 2 S(t
end

) ^m 62 S̄. Let i be the image

that spawns m, we have

t(i) < T
s

(m) < t
end

. (4.2)

Let ḿ be the message that has a spawn edge connects to m, we know it is true that

t
c

(ḿ) > t
s

(m). (4.3)

From (4.2) and (4.3), we have t
c

(ḿ) > t(i), which implies ḿ 62 C̄. Then we consider

two scenarios:

1) If ḿ 2 S̄, S̄ 6= C̄. This contradicts our assumption.

2) If ḿ 62 S̄, we choose ḿ as m and repeat the above process until a ḿ s.t. ḿ 2 S̄

is found. This also implies S̄ 6= C̄. Contradiction.

Thus, S̄ = S(t).
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C̄ = C(t) can be proven with the same method.

Lemma 4.4. If
P

n

i=1(|Si

|� |C
i

|) = 0, S̄ = C̄.

Proof.
P

n

i=1(|Si

|� |C
i

|) =
P

n

i=1 |Si

|�

P
n

i=1 |Ci

|.

Because 8m 2 S
i

, m 62 S
x

, where x 6= i, And 8n 2 C
i

, n 62 C
x

, where x 6= i, we

have
P

n

i=1 |Si

| = |

S
n

i=1 Si

| =
��S̄
��, and

P
n

i=1 |Ci

| = |

S
n

i=1 Ci

| =
��C̄

��.

Thus,
P

n

i=1(|Si

|� |C
i

|) = 0 ,

��S̄
��
�

��C̄
��
,

��S̄
�� =

��C̄
��

From Lemma 4.2, we have S̄ = C̄.

Theorem 4.1. If
P

n

i=1(|Si

|� |C
i

|) = 0, computation in a finish block in CAF 2.0

terminates by the time t
end

.

Proof. From Lemma 4.4 and Lemma 4.3,
P

n

i=1(|Si

|�|C
i

|) = 0 ) S̄ = C̄ ) S(t
end

) =

C(t
end

), which means all messages spawned before t
end

have completed by t
end

. Each

image enters termination detection only after it completes computation local to the

finish block, thus at t
end

local computation completes. Hence, computation in the

finish block in CAF 2.0 terminates by t
end

.

This completes the proof of correctness of our termination detection algorithm.

Communication bound

This section proves that the termination detection algorithm described in Section 4.2.3

takes O((L+1) log(p)) communication time in the worst case, where p is the number

of processes and L is the length of longest spawning chain of shipped functions. One

can perform an all-to-all reduction in O(log p) time using a reduction tree and a

broadcast tree. Here, we prove that our algorithm uses at most L + 1 rounds of

sum-reduction.
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Theorem 4.2. The algorithm listed in Figure 4.7 uses at most L+1 rounds of sum-

reduction to detect termination, where L is the length of longest spawning chain of

shipped functions.

Proof. We prove by induction.

Base case L = 0 means no functions are shipped within a finish scope. In this

case the number of messages sent, received, delivered and completed are (0, 0, 0, 0)

on each image. These counters will sum-reduce to zero after they are collected by an

allreduce operation. Thus, one allreduce detects termination correctly.

Inductive hypothesis Assume that when the longest chain of spawned functions

in a finish scope is L, at most L + 1 rounds of reductions are needed to detect

termination.

Inductive step We must show that at most L+2 rounds of reductions are needed

to detect termination when the longest chain of spawned functions is L+ 1.

t
i

(k) denotes the kth time when image i switches from an even epoch to its cor-

responding odd epoch. t
s

(m), t
r

(m), and t
c

(m) denote the time when a shipped

function m is sent, received, and completed respectively.

In a finish scope where the longest chain of spawned functions has length L+1,

at the time that the L+1 round of reduction completes, the longest chain of shipped

functions that has been spawned is equal to or larger than L (L or L+ 1); otherwise

the system would have terminated in an earlier round by the inductive hypothesis.

If it is L + 1, termination is detected successfully with L + 1 rounds of reduction.

If it is L, we know that all shipped functions have completed, except the shipped

function that is the last function in the chain of length L+1. We denote the shipped
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function that has yet to complete as m. Let i be the image sends m, and j be the

image completes m. We know that t
c

(m) > t
j

(L + 1). In our algorithm, because

an image waits all messages it sends to land before it enters allreduce, we have

t
r

(m) < t
i

(L+ 1). Then, because an image completes all messages it receives before

it starts another round of reduction, we have t
c

(m) < t
j

(L + 2). Because m is the

only message left after L+ 1 reductions, the L+ 2 reduction detects termination.

Since both the basis and the induction step have been proven, Theorem 4.2 is

proven.

Theorem 4.2 combined with the fact that an all-to-all reduction uses O(log p) time

shows that our termination detection algorithm takes at most O((L + 1) log p) time

when the longest chain of spawned functions is L.

Nested finish blocks

In this section we prove that our previously proven results for our termination detec-

tion algorithm with respect to both correctness and performance apply to a finish

block nested inside another finish block, and a finish block that contains a nested

finish block.

Let F
i

, i = 1, 2, ...n denote a series of nested finish blocks; F1 is the innermost

block and F
n

is the outermost one.

Theorem 4.3. The algorithm listed in Figure 4.7 correctly detects termination of

finish blocks F
i

, i = 1, 2, ...n.

Proof. We prove that our algorithm correctly detects termination of F
i

by induction.

Base case Since we tag each message sent from a finish scope with its handle.

We apply the algorithm in Figure 4.7 to only messages tagged with the handle of
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F1 and detects termination of F1. By Theorem 4.1, we detect the termination of F1

correctly.

Inductive hypothesis If the algorithm in Figure 4.7 detects termination of F
n

, it

can also detects termination of F
n+1.

Inductive step By the time that the program reached the end finish statement

of F
n+1, it has already exited from F

n

. Thus, F
n+1 is the innermost finish block

when the termination detection algorithm starts execution. By Theorem 4.1, our

algorithm detects the termination of F
n+1.

Finally, Theorem 4.2 which establishes an upper bound on the number of rounds

of sum-reduction used by a finish also holds when nested finish blocks exits. This

can be easily proven by applying the same logic as in Theorem 4.3.
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Chapter 5

Evaluation

Here, we evaluate the performance of our implementation of function shipping and

the finish construct in CAF 2.0 with three benchmarks: pingpong, RandomAccess,

and Unbalanced Tree Search (UTS). We describe these benchmarks in detail in Sec-

tion 5.2. These three benchmarks evaluate di↵erent aspects of the performance of

function shipping and the finish construct in CAF 2.0. We start by introducing

the experiment platforms that we used and then present our evaluations with each of

these three benchmarks.

5.1 Platforms

We experiment on three platforms with di↵erent characteristics. The first one is

Jaguar in the Oak Ridge National Lab Leadership Computing Facility, which is the

newest Cray XK6 supercomputer. The second one is Franklin in National Energy

Research Scientific Computing Center, which is a Cray XT4 system. The third one

is STIC, a Intel Core i7 based computing cluster at Rice University. Table 5.1 lists

the configuration of these systems in detail.
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Table 5.1 : Configuration of experiment systems.

Jaguar Franklin STIC*

Architecture: Cray XK6 Cray XT4 Appro Greenblade E5530

Processor: 16-core AMD 4-core 2.3GHz AMD 4-core 2.66GHz Intel

Nodes: 18,688 9,572 170

Cores/node: 16 4 8

Total cores: 299,008 38,288 1,360

Memory/node: 32GB 8GB 12GB

Interconnect:: Gemini SeaStar 4X DDR Infiniband

* STIC also includes 44 Appro Greenblade E5650 compute nodes each with two

six-core 2.6GHz Intel Xeon Processors. But these nodes are not used in our

experiments.

5.2 Benchmarks and evaluation

This section presents each of our three benchmarks, Pingpong, RandomAccess and

UTS, describes their implementation, evaluates their performance.

Each benchmark serves a purpose. We use the pingpong benchmark to measure

the overhead of our implementation of function shipping. We use RandomAccess to

explore the utility of function shipping for applications with irregular data access

patterns. We use the UTS benchmark to exploit the utility of function shipping for

managing load balancing in applications with dynamically generated parallelism. We

describe and evaluate each of these benchmarks in the following sections.
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1 program pingpong
2 integer :: my_rank , my_partner , counter , i
3

4 my_partner = 1 - team_rank ()
5 counter = 1000000
6

7 if (my_partner .ne. 0) spawn ping ()[ my_partner]
8

9 do while (counter .ne. 0)
10 call caf_async_advance ()
11 enddo
12 contains
13 subroutine ping()
14 counter = counter - 1
15 spawn pong ()[ my_partner]
16 end subroutine
17

18 subroutine pong()
19 counter = counter - 1
20 if (counter .ne. 0) spawn ping ()[ my_partner]
21 end subroutine
22 end program

Figure 5.1 : Source code for Pingpong benchmark implemented with function shipping
in CAF 2.0.

5.2.1 Pingpong benchmark

To measure the performance of our implementation of function shipping in CAF 2.0,

we developed a Pingpong benchmark that tests latency of shipping functions in

CAF 2.0. Figure 5.1 lists the source code for implementation of Pingpong bench-

mark using function shipping. With function shipping, the receiver of the ping func-

tion does not need to synchronize with the sender to initiate the function pong. In

our implementation, the function ping spawns the function pong after it decrements

the counter (line 14) and function pong spawns ping back. This implementation is
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di↵erent from the usual way of implementing the Pingpong benchmark, where one

process pings the other then waits until it receives a pong back to ping again. Our

implementation removes the synchronization cost of waiting for pong.

It is worth noting that an Note that an implicit finish block that encloses the

entire program will complete these shipped functions before program exits. This im-

plicit finish block can correctly detect termination of the program without having

the wait loop at line 10. Because the number of reductions used for termination de-

tection is bounded by the maximum length of the spawning chains, which in this case

is one million, one million reductions may interleave with the pingpong benchmark

when it executes. Since the focus of this benchmark is to test the roundtrip latency

of function shipping, we use the wait loop to avoid incurring the overhead of finish.

Figure 5.2 shows a comparison of function shipping with Active Messages in GAS-

Net and the MPI send & MPI recv routines in MPI. Because of our implementation of

function shipping is implemented using Active Messages in GASNet, the implemen-

tation of pingpong benchmark using Active Messages in GASNet provides an upper

bound on the performance that we can possibly achieve. We also show the perfor-

mance of an implementation of pingpong using MPI’s MPI send & MPI recv alongside

the AM and function shipping implementations to demonstrate how our implementa-

tion of function shipping performs compared to these other kinds of communication.

From Figure 5.2, we see that the function shipping implementation above Active Mes-

sages in GASNet takes about 90% more time than the implementation using Active

Messages and MPI. Analyzing the results on STIC and Jaguar with HPCToolkit [44]

shows that the local overhead of function shipping implementation of pingpong takes

about 17% of the total running time on STIC and 28% on Jaguar. This local overhead

accounts for time marshaling and de-marshaling the shipped function and managing
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Figure 5.2 : A comparison of the roundtrip latency of a ping-pong pair implemented
using function shipping, Active Messages in GASNet, and MPI send & MPI recv.

shipped functions using the CAF 2.0 asynchronous engine. Other than local overhead,

the increase of latency in the function shipping implementation is due to the cost of

transferring shipped functions and the data used to manage these shipped functions.

5.2.2 RandomAccess benchmark

The HPC Challenge RandomAccess benchmark evaluates the rate at which a parallel

system can apply updates to randomly indexed entries in a distributed table. Per-

formance of the RandomAccess benchmark is measured in Giga Updates Per second

(GUP/s). GUP/s is calculated by identifying the number of table entries that can be
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1 do j=1 ,1024
2 finish
3 do i=1 ,1024
4 k = generate_random_number ()
5 p = image_of(k)
6 i = offset_of(k)
7 spawn remote_update(table(i)[p], i)[p]
8 end do
9 end finish

10 end do

Figure 5.3 : Pseudo-code for a implementation of RandomAccess benchmark in
CAF 2.0.

randomly updated in one second, divided by 1 billion (109). The term “randomly”

means that there is little relationship between one table index to be updated and

the next. An update is a read-modify-write operation on a 64-bit word in the table.

A table index is generated, the value at that index is read from memory, modified

by an integer operation (xor) that combines the current value of the table entry

with a literal value, and the resulting value is written back to the table entry. A

detailed specification for RandomAccess benchmark can be found in HPC Challenge

Benchmarks specification [45].

We compared two versions of implementation of RandomAccess in CAF 2.0: one

implementation that uses function shipping to spawn a function to perform update

remotely; the other implementation first reads (GET) an entry from a remote image,

updates it locally, then writes (PUT) the updated value back. Figure 5.3 lists the

pseudo-code for our implementation of RandomAccess with function shipping. To

measure the performance of our finish algorithm, we grouped 2048/1024/512 up-

dates in a finish block, so that 2048/4096/8192 instances of our finish algorithm

will be invoked when we update a table of 222 entries.
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Figure 5.4 : A comparison of two implementations of the RandomAccess benchmark
in CAF 2.0 (GP = GET & PUT; FS = function shipping) on Jaguar.

Figure 5.4 shows the performance of two implementations of RandomAccess bench-

mark. We measure the running time of applying remote update on a distributed table

of size 8MB on each process image. From 32 to 4096 processes, we see that the imple-

mentation using function shipping performs better on more than 512 processes than

than the implementation using GET and PUT. And we see that the cost of invoking our

finish algorithm is not excessive because the running time is significantly di↵erent

for di↵erent number of rounds of termination detection.

5.2.3 Unbalanced Tree Search benchmark

The UTS benchmark [12] performs an exhaustive parallel search on a deterministic,

unbalanced search space. The UTS tree traversal starts with a single root node and

proceeds in nested parallel style to generate billions of nodes. The number of children



53

1 !while there is work to do

2 do while(queue_count .gt. 0)
3 delete_queue_end(descriptor , depth)
4 call process_work_item(descriptor , depth)
5 ...
6 !check if someone needs work

7 if (( incoming_lifeline .ne. 0) .and. &
8 (queue_count .ge. lifeline_threshold )) call push_work ()
9 endif

10 ! attempting to steal work from another image

11 steal_from_img = get_random_image_other_than_me(my_rank)
12 spawn steal_work(my_rank , 0)[ steal_from_img]
13 ! set up lifelines

14 neighbor_index = 0
15 do while (neighbor_index .lt. max_neighbor_index)
16 next_neighbor = mod(my_rank +(2** neighbor_index), world_size)
17 spawn set_lifelines(my_rank , neighbor_index )[ next_neighbor]
18 neighbor_index = neighbor_index + 1
19 enddo
20 end do

Figure 5.5 : Pseudo-code for the UTS benchmark in CAF 2.0.

of a node is a random variable with a given distribution. Each node in the tree

contains a 20 byte descriptor. Descriptor of children node is created by applying

the SHA-1 cryptographic hash on the pair (parentdescriptor, childindex). Due to

imbalance in the search space and the volume of nodes created, the performance of

UTS depends heavily on e�cient dynamic load balancing. Our implementation of

the UTS benchmark in CAF 2.0 closely follows the implementation in X10 presented

by Saraswat [33]. Function shipping in CAF 2.0 replaces the async construct in X10,

and, instead of implementing a global termination detection algorithm in UTS, we

use our finish construct. Figure 5.5 lists the pseudo code of the core of our UTS

implementation in CAF 2.0. We use function shipping and the finish construct in
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Figure 5.6 : Unbalanced Tree Search benchmark results.

CAF 2.0 to implement a UTS based on the T1WL UTS benchmark. The nodes in

the tree of this benchmark uses a geometric distribution with expected child count

per node of 4 and a maximum tree depth 18.

Figure 5.6 shows the parallel e�ciency of our CAF 2.0 UTS implementation on

various number of processors on Jaguar. For a tree with size of 270 billion nodes, our

parallel e�ciency is above 87% for up to 2K processes. Our scaling e�ciency up to 1K

processors is essentially equivalent of that of the original X10 implementation [33]. We

show the scaling behavior between 1K and 8K processors for CAF 2.0; no information

about the scaling e�ciency of the X10 implementation is available for this range.

With our UTS implementation, we show that our finish construct is capable of

managing termination detection in UTS. This demonstrates its utility in CAF 2.0.

Moreover, our experimental results with UTS benchmark demonstrate that our finish
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Figure 5.7 : Number of allreduce operations used for detecting termination in UTS

construct’s implementation is scalable and e�cient. In Figure 5.7, we show that en-

forcing an upper bound on the number of rounds of detection before termination

is e↵ective and beneficial. As Figure 5.7 shows, the number of allreduce opera-

tions used for detecting termination in our algorithm is about 50% the number of

allreduce operations used by an algorithm that does not wait for delivery and com-

pletion of shipped messages before starting a round of termination detection from

128 to 2048 processors. However we see a trend that the di↵erence in the number of

rounds of termination detection reduces as the number of processes increases. This

is because when the number of processes increases in the system it takes longer time

for an allreduce to complete and the total running time is reduced.
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Chapter 6

Conclusions and Future Work

Partitioned Global Address Space languages now are viewed as the most promising

alternative to MPI to address the programming di�culty across compute nodes [1].

A critical way of achieving scalable performance on large parallel systems is hiding

communication latency. Our group has explored extending enriches the Coarray For-

tran language with a set of primitives including asynchronous copies and collective

operations that enable users to hide communication latency with computation on

large scale parallel systems [38]. This thesis explores function shipping as an addi-

tional mechanism that programmers can use to hide or avoid communication latency.

Function shipping gives users the ability to co-locate computation with data. This

helps avoid exposing latency in certain circumstances, as shown in the RamdomAc-

cess benchmark. We now summarize the contributions of this thesis and also propose

extensions to be pursued as part of future work.

CAF 2.0’s support for function shipping is a full-featured construct that enables

a shipped function to perform a full range of operations, including blocking remote

operations. In particular, a shipped function can spawn more functions, communicate,

and synchronize with other processes. These abilities enrich CAF 2.0 expressiveness

by making possible to implement algorithms that do work-stealing and work-sharing

for load balancing, and help avoid exposing latency by enabling users to co-locate

computation with data.

To achieve an implementation of function shipping with such degree of flexibility,
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we used a compilation strategy similar to Cilk 5 [25], generating a continuable copy of

the same function so that a function’s stack and program counter can be saved onto

the heap and resumed later. This allows a shipped function to yield its processor

to another thread while it is waiting for communication or synchronization. More

importantly, it eliminates the possibility of deadlock caused by trying to synchronize

while blocking the same thread, as demonstrated in Section 4.1.4.

We adopt the idea of Optimistic Active Messages [23] to execute shipped functions

in a optimistic way. When a shipped function is received by a process, it executes

it directly in the active message handler until the function makes a blocking call.

As demonstrated by Wallach et al., despite the gain in expressiveness over Active

Messages, Optimistic Active Messages performs as well as Active Messages [23].

To synchronize shipped functions properly, we introduce a finish construct into

CAF 2.0, inspired by the finish construct in X10 but adapted to fit into CAF 2.0’s

SPMD programming model. We developed a termination detection algorithm ex-

tended from a simple algorithm by Mattern [36]. This algorithm is design for scal-

ability and has a nice upper bound on communication complexity. In this thesis we

proved that our algorithm detects termination correctly using a bounded number of

rounds of communication. Our experiments show that this upper bound can greatly

reduce the number of rounds of allreduce operation used to detect termination on

parallel architectures.

We demonstrate the usability and performance of function shipping and finish

construct in CAF 2.0 with HPCC RandomAccess benchmark and Unbalanced Tree

Search benchmark (UTS). Our implementation of RandomAccess yields scalable per-

formance compared with a simple algorithm use only one-sided GET and PUT . Our

implementation of UTS achieves parallel e�ciency above 90% up to 4K cores, which



58

is comparable to the best performance of the implementation of UTS in X10.

6.1 Future work

In pursuing of the goal of making writing applications with dynamic generated par-

allelism and irregular data access easier and e�cient on large scale parallel systems,

there are several directions worth further exploring and experiment. We outline a few

directions here.

Combining computation with termination detection In the process of devel-

oping the UTS benchmark in CAF 2.0, we noticed that the problem of termination

detection and load balancing are often bonded together. Since termination detection

algorithms that based on message or channel counting communicates across all nodes

through reduction or broadcast, the information about load on each process can also

be communicated combined with the messages used for termination detection. In this

way, the task of load balancing is embedded into termination detection so that total

number of messages in the system during load balancing could be reduced to achieve

better performance. This idea extends beyond combining only load balancing with

termination detection. AM++ [22] supports a feature that enables a user to provide

a user-defined integer to be summed and broadcast across the system along with

termination detection. They argue that this feature is useful for many algorithms

consist of a phase of active messages followed by a reduction or broadcast operation.

We envision that more expressiveness could be achieved by allowing users to provide

callback functions to be carried by the messages used for termination detection in-

stead of just a single integer value. The callback functions provided to a termination

detection construct can be used to accomplish work sharing or work stealing.
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Improving thread support in CAF 2.0 Co-locating computation with data

and utilizing intra-node parallelism is essential to fully utilize hardware capabilities

of modern parallel architectures. Instead of making di↵erent processing cores within

the same compute node di↵erent processes, using a single multi-threaded process on a

node simplifies intra-node communication because of the shared address space. E�-

ciently scheduling computations generated within a node together with computations

shipped across nodes is an interesting research direction to go after. Di↵erent appli-

cations may need di↵erent scheduling policies to best accommodate their concurrency

needs. Because the di�culty of analyzing the parallel characteristic of a program by

a compiler alone, allowing a user to specify the scheduling policy to use for a program

may be necessary to achieve scalable performance on modern parallel systems.

Better support for dynamic load balancing in CAF 2.0 Many real applica-

tions and algorithms requires load balancing to achieve scalable performance on par-

allel machines. Many load balancing algorithms have been proposed to address this

issue such as randomized work-stealing. Work-stealing works very well on machines

that have hardware support for shared memory address. On distributed systems that

does not have hardware support for shared memory, using work-stealing to e�ciently

address load balancing problems is still under study [46, 47, 33]. One promising way

of e�cient work-stealing on distributed systems is to use the information gathered

from a termination detection protocol to direct which victim to select for stealing.

This way may greatly increase the rate of successful stealing attempts.
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